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1 Review
1.1 Compactness of Lp Spaces
Compactness is rather dearth in infinitely dimensional Banach spaces. Even Lp

spaces, needs extra conditions to achieve compactness.

Theorem 1 (Riesz-Fréchet-Kolmogorov). For 1 ≤ p < +∞, a subset F of Lp is
compact if and only if

1. F is bounded;

2. The Lp integration of F is uniformly absolutely continuous,

lim
h→∞

sup
f∈F

∥f(x+ h)− f(x)∥p = 0;

3. The Lp integration of F uniformly vanishes at infinity,

lim
R→∞

sup
f∈F

∫
BR(0)c

|f |p = 0.

This theorem is a result of Arzela-Ascoli theorem, the most general com-
pactness criterion.

However, it is usually not that practical to verify these properties. In possession
of fewer properties, we might request weaker conclusions.

Theorem 2 (Eberlein-Smulian). A bounded subset of Lp is weakly compact if
1 < p < +∞, namely there exists a weakly convergent subsequence.

Remark 1. This conclusion is actually applicable for general reflexive spaces.

Boundedness is a simpler condition. In practice, we usually obtain a weak
limit of a subsequence, and then utilize some magical tricks (such as compact
embedding) to prove its strong convergence.

Since L1 is not reflexive, more conditions are required to form a weakly compact
subset.

Theorem 3 (Dunford-Pettis). Consider the L1 space on a σ-finite space. A subset
F of it is compact if and only if

1. F is bounded;

2. F is uniformly absolutely continuous,

lim
µ(A)→0

sup
f∈F

∫
A

|f | dµ = 0;
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3. F is equi-tight, namely ∀ ε > 0, ∃K ⊂ X,µ(K) < +∞ such that

sup
f∈F

∫
Kc

|f | dµ < ε.

1.2 Radon Measures
For a measure space X that is not σ-finite, say just locally compact Hausdorff
(LCF), it is pointless to require a high regularity. We extend such measures with
a reduction of property.

Definition 1 (Radon measure). A Radon measure is a Borel measure that is
finite on compact sets outer regular for Borel sets, and inner regular for open sets.
Moreover, if it is inner regular for all Borel set, we call it a regular measure.

Obviously, we extract principal properties from general concrete Borel measures
to establish Radon set. It is a universal method of extending a concept.

Although the measure is worse, we can look for better dual objects to “recon-
cile” them.

Theorem 4 (Reisz representation theorem for Cc(X)). A linear function I is
positive if I(f) ≥ 0 for every f ≥ 0. Given a positive linear functional on Cc(X),
there exists a unique Radon measure µ such that

I(f) =

∫
X

f dµ.

Moreover, µ satisfies

µ(U) = sup{I(f) | f ∈ Cc(X), 0 ≤ f ≤ 1, suppf ⊂ U},
µ(K) = inf{I(f) | f ∈ Cc(X), f ≥ χK}

where U is open while K is compact.

In fact, Radon measures behave almost the same as Borel measures.

Theorem 5 (Properties of Radon measures). Let µ be a Radon measure on X,
then

1. µ is regular if X is σ-finite;

2. Cc(X) is dense in Lp(X) for 1 ≤ p < +∞;

3. Lusin’s theorem still holds;
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4. Tietze extension is valid.

Since C0(X) is the closure of Cc(X) under maximum modulus norm, we can
extend Riesz representation theorem to C0(X).

Theorem 6 (Reisz representation theorem for C0(X)). Given a function f ∈
C0(X) and a complex Radon measure µ, the positive linear functional

Iµ(f) =

∫
X

f dµ.

is an isometry from M(X) to (C0(X))∗, where M(X) is the collection of all complex
Radon measures on X.

Remark 2. The real and imaginary parts of a complex Radon measure are allowed
to be signed measures.

As is shown in our homework, M(X) is a linear space under the total varia-
tion norm

∥µ∥ = |µ|(X) = µ1(X) + µ2(X) + ν1(X) + ν2(X), µ = µ1 − µ2 + i(ν1 − ν2).

Note the inclusion relation

Cc(X) ⊂ C0(X) ⊂ Cb(X),

we can extend the concept “convergence” to measures through duality.

Definition 2 (Convergence modes of measures). Let {µn}∞n=1 be a sequence of
Radon measures, then

1. µn converges to µ vaguely if

lim
n→∞

∫
f dµn =

∫
f dµ, ∀ f ∈ Cc(X);

2. µn converges to µ weakly if

lim
n→∞

∫
f dµn =

∫
f dµ, ∀ f ∈ C0(X);

3. µn converges to µ narrowly if

lim
n→∞

∫
f dµn =

∫
f dµ, ∀ f ∈ Cb(X);

Former convergences are a litter weaker than latter ones.
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2 Solutions to Homework
2.1 Exercise 6.2.22
(1)

Proof. As Riemann-Lebesgue lemma implies, if f ∈ L2(X), then

lim
n→∞

∫ 1

0

f(x) cos(2πnx) dx = 0.

Therefore, {cos(2πnx)}∞n=1 converges weakly to 0.
For ε ∈ (0, 1), it is easy to check that

µ

{
| cos(2πnx)| > 1

2

}
=

2

3
,

independent of n.
Suppose that {cos(2πnx)}∞n=1 converges to 0 almost everywhere. By dominant

convergence theorem, we have

0 =

∫ 1

0

lim
n→∞

cos2(2πnx) dx =
1

2
lim
n→∞

∫ 1

0

(1 + cos(4πnx)) dx =
1

2
,

a contradiction!

(2)

Proof. Since fn converges to 0 pointwise except for x = 0, we conclude that fn → 0
almost everywhere. For ε > 0, we have

µ{|fn| > ε} ≤ 1

n
→ 0, n → ∞,

thus fn → 0 in measure.
It is obvious that g = χ[0,1] belongs to Lp for all p ∈ [1,+∞], but∫

fng =

∫
fn = 1 > 0.

Therefore, fn never converges weakly in Lp.

Remark 3. It is almost impossible to directly show that {cos(2πnx)}∞n=1 does not
converge almost everywhere.
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2.2 Exercise 6.5.41
Proof. Without loss of generality suppose p < q. T is a linear operator since∫

T (λ1f1 + λ2f2)g =

∫
(λ1f1 + λ2f2)Tg

= λ1

∫
f1Tg + λ2

∫
f2Tg

=

∫
(λ1Tf1 + λ2Tf2)g, ∀ g ∈ Lp ∩ Lq.

We first show that T is bounded on Lq. By the duality expression of Lq norm,
we have for f ∈ Lq that

∥Tf∥q = sup

{∫
(Tf)g

∣∣∣∣ g ∈ Lp, ∥g∥p = 1

}
= sup

{∫
f(Tg)

∣∣∣∣ g ∈ Lp, ∥g∥p = 1

}
≤ sup {∥f∥q∥Tg∥p | g ∈ Lp, ∥g∥p = 1}
≤ sup {∥T∥p→p∥f∥q∥g∥p | g ∈ Lp, ∥g∥p = 1}
= ∥T∥p→p∥f∥q.

Riesz-Thorin interpolation theorem implies T is also bounded on Lr.
It is easy to verify that Lp is dense in Lr. Additionally, T is continuous since

it is linear and bounded. As a result, the extension is unique.
Remark 4. A more complicated approach is the approximation of simple function,
which is unique.

2.3 Suppliments
Exercise 1 (Urysohn’s lemma). Given an open Ω ⊂ Rn and a compact set K ⊂ Ω.
Prove: there exists φ ∈ C∞

c (Ω) such that φ|K = 1 and 0 ≤ φ ≤ 1.
Proof. Without loss of generality assume Ω is bounded. Otherwise, there exists
r > 0 such that K ⊂ Br(0), thus we can substitute Ω with Ω∩Br(0) and let φ = 0
in Ω\Br(0).

The boundedness of Ω admits the existence of a sufficiently large R > 0 such
that Ω ⊂ BR(0). It is easy to verify that BR(0)\Ω is a bounded closed set, and
then a compact set.

Now we are going to prove there is a positive distance between K and BR(0)\Ω.
If

inf
{
|x− y|

∣∣∣x ∈ K, y ∈ BR(0)\Ω
}
= 0,
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then there is a sequence {xn}∞n=1 and {yn}∞n=1 such that |xn − yn| < 1
n
. Since

{xn}∞n=1 is bounded, it possesses a convergent subsequence {xnk
}∞k=1, converging

to x ∈ K. Moreover, there is a convergent subsequence of {ynk
}∞k=1, converging to

y ∈ BR(0)\Ω. As a result, we have

x = y =⇒ BR(0)\Ω ∩K ̸= ∅ =⇒ Ωc ∩K ̸= ∅ =⇒ Ωc ∩ Ω ̸= ∅,

a contradiction.
Back to the point, take the mollifier ηε such that ε < d

2
, and define

φ(x) =

∫
χK̃(y)ηε(x− y) dy ∈ C∞

c (Ω).

where K ⊂ K̃ ⊂ Ω satisfies

K̃ =

{
x ∈ Ω

∣∣∣∣ infy∈K
|x− y| ≤ d

2

}
.

This φ definitely satisfies our requirements since

x ∈ K =⇒ φ(x) =

∫
K̃

ηε(x− y) dy = 1,

x ∈ Ωc =⇒ φ(x) =

∫
0 dy = 0.

Remark 5. Urysohn’s lemma is still correct in some general topological spaces,
yet the proof will be much more tricky. Some student took ε = d, unfortunately,
this mollifier is to rough to satisfy our requirements.

Exercise 2. Show that finite measure space M(X,BX ,C) is a Banach space under
total variation norm.

Proof. Let {µn}∞n=1 ⊂ M(X,BX ,R) be a sequence of complex Borel measures such
that

lim
m,n→∞

∥µm − µn∥ = lim
m,n→∞

|µm − µn|(X) = 0.

For every E ∈ BX , we have

|µm(E)− µn(E)| ≤ |µm − µn|(E) ≤ |µm − µn|(E) → 0, m, n → ∞.
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That is to say {µn(E)}∞n=1 is a Cauchy sequence in C. Therefore, we can define
the limit set function “pointwise” by

µ(E) = lim
n→∞

µn(E).

Finally, we need to verify that µ is a Borel measure in deed. Actually, it is
obvious that

µ(∅) = lim
n→∞

µn(∅) = 0.

Moreover, let {Ek}∞k=1 be a disjoint sequence of Borel measurable sets, then

µ

(
∞⊔
k=1

Ek

)
= lim

n→∞
µn

(
∞⊔
k=1

Ek

)
= lim

n→∞

∞∑
k=1

µn(Ek) =
∞∑
k=1

µ(Ek).

Here it is reasonable to swap two limits since the finiteness of µn implies the series
is absolutely convergent.

We have proved that µ is a measure, and by definition Borel sets are µ-
measurable and µ is finite. As a result, we conclude that µ is a finite Borel
measure and thus M(X,BX ,C) is a Banach space.

Remark 6. There is another ingenious approach provided by a couple of students
by considering

ρ =
∞∑
n=1

1

2n
|µn|

for a Cauchy sequence {µn}∞n=1. In this sense, µn is absolutely continuous with
respect to λ. Therefore, the convergence of measure is converted to that of a
sequence of L1 functions, which is more familiar to us.

Exercise 3. If X is a Banach space, then F is precompact if and only if ∀ ε > 0,
there exists a precompact Kε such that

F ⊂ Kε +Bε(0) = {f + g | f ∈ Kε, g ∈ Bε(0)}.

Proof. =⇒:
Take Kε = F .
⇐=:
If F is not precompact, then there exist a sequence {φn}∞n=1 ⊂ F such that

every subsequence of it is not Cauchy.
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Consider decomposition φn = fn + gn where fn ∈ Kε, gn ∈ Bε(0) for a pending
ε > 0, then

∥φm − φn∥ ≤ ∥fm − fn∥+ ∥gm − gn∥ ≤ ∥fm − fn∥+ 2ε.

Since Kε is precompact, there is a sufficient large N and a subsequence {fnk
}∞k=1

such that

∥fnj
− fnk

∥ < ε, ∀nj, nk > N.

However, our assumption implies {φnk
}∞n=1 is not Cauchy, hence there exist

ε0 ≥ 0 and j, k > N such that

∥φnj
− φnk

∥ ≥ ε0.

Take ε = ε0
3

and we obtain

ε0 ≤ ∥φnj
− φnk

∥ ≤ ∥fnj
− fnk

∥+ 2ε < 3ε = ε0,

a contradiction.

Remark 7. We can also construct a finite ε
2
-net of K ε

2
, and then the fact

B ε
2
(x) + B ε

2
(0) ⊂ Bε(x)

implies the existence of an ε-net of F .

3 Rearrangement
Most measurable functions behave so terribly that we can hardly expect any re-
markable properties from them. However, we can adjust the level set of a measur-
able function in order to make it “looks more regular”.

This operation is somehow compatible with Lebesgue integration with focuses
more on the range instead of domain. As we know, a lot of practical inequalities
achieve the equality if the function is symmetric. That is our primary inspiration
of rearrangement.

3.1 Schwartz Rearrangement
Symmetry is a concept concerned with metric, and we shall talk about rearrange-
ment only on Rn. In fact, we want to reshape an arbitrary irregular function into
a radial one.
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Definition 3 (Rearrangement of a bounded region). Let Ω ⊂ Rn be a bounded
region, then the rearrangement of Ω is a ball Ω∗ = BR(0) such that |Ω∗| = |Ω|.

Remark 8. It is worthwhile to mention that some eigenvalue problems achieve
their extrema if and only in Ω = Ω∗.

In that sense, we can naturally symmetrize a characteristic function by

χ∗
Ω = χΩ∗ .

The fundamental idea is to convert each lever set to a radially symmetric set
centered at origin to construct a new function that decrease with respect to r.
However, not every function is suitable for rearrangement. For example, we cannot
rearrange f(x) = x since it is impossible to determine its value at origin.

Definition 4 (Rearrangement of a function). Let u(x) be a measurable function
that vanishes at infinity, namely

lim
|x|→∞

f(x) = 0,

then the Schwartz Rearrangement of u is defined by

u∗(x) =

∫ +∞

0

χ∗
{|u|>t}(x) dt.

In other words, u∗ is radially symmetric and decreasing function such that

|{|u| > t}| = |{|u∗| > t}|, ∀t ≥ 0.

Let’s calculate an example to deep our comprehension. Abstract

u(x) =

{
0, x ∈ (−∞, 0) ∪ (2,+∞)
1
2
x, x ∈ [0, 2],
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then

u∗(x) =

∫ +∞

0

χ∗
{|u|>t}(x) dt

=

∫ +∞

0

χ{|u|>t}∗(x) dt

=

∫ +∞

0

χ(t−1,1−t)(x) dt

=

∫ +∞

0

χ{0<t<1+x}∩{0<t<1−x}(t) dt

= max{0,min{1 + x, 1− x}}

=


1 + x, x ∈ [−1, 0],

1− x, x ∈ (0, 1],

0, x ∈ (−∞,−1) ∪ (1,+∞).

Let v(r) = u∗(|x|), then

v(r) =

{
1− r, 0 ≤ r ≤ 1,

0, r > 1.

The rearranged function somehow maintains a couple of properties of the orig-
inal function.

Theorem 7. Rearrangement is Lp norm invariant, namely

∥u∥p = ∥u∗∥p.

Proof. The case p = ∞ is trivial. Assume 1 ≤ p < +∞, the Layer cake represen-
tation implies

∥u∥pp =
∫ +∞

0

pλp−1|{|u| > λ}| dλ

=

∫ +∞

0

pλp−1|{|u∗| > λ}| dλ

= ∥u∗∥pp

3.2 Pólya-Szegö inequality
In this section, we shall show a remarkable result on the Lp norm of gradient of
the rearranged function.
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Theorem 8 (Coarea formula). For u ∈ C1(Rn), v ∈ L1(Rn), we have∫
Ω

v|∇u| dx =

∫
R

(∫
{u=λ}∩Ω

v dHn−1

)
dλ.

This theorem is quite useful yet its proof is sophisticated. The most general
coarea formula is written in form of Riemannian geometry. We omit the proof and
interested students please refer to Evans’ textbook on geometric measure theory
or any lecture note on Riemannian geometry.

In comparison of its original statement, we rely more on its corollary in Eu-
clidean spaces.

Theorem 9. For a function u ∈ C1(Rn), define

µ(t) = |{|u| > t}| =
∫

χ{|u|>t},

then we have

µ′(t) = −
∫
{u=t}

1

|∇u|
dHn−1.

Proof. Let v = 1
|∇u| and Ωt = {|u| > t} then

µ(t) = |Ωt| =
∫ +∞

t

(∫
{u=λ}

1

|∇u|
dHn−1

)
dλ.

Construct the quotient of differences

µ(t+ h)− µ(t)

h
= −1

h

(∫ t+h

t

(∫
{u=λ}

1

|∇u|
dHn−1

)
dλ

)
.

Let h tends to 0, then

µ′(t) = −
∫
{u=t}

1

|∇u|
dHn−1.

Remark 9. With the assistance of µ, we can present Schwartz rearrangement in
a different manner

v(r) = sup

{
λ

∣∣∣∣µ(λ) > π
n
2

Γ(1 + n
2
)
|x|n

}
,

where v(|x|) = u∗(x)
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This conclusion does not involve rearrangement, but we shall take advantages
of it in next proof.

As we have known since the second grade of elementary school, a planar shape
of given area enjoys the minimum perimeter if and only if it is a circle. We can
present this fact in higher dimensions with the assistance of rearrangement.
Theorem 10 (Isoperimetric inequality for level sets). For u ∈ C1

0(Rn), we have

Hn−1({u∗ = t}) ≤ Hn−1({u = t}).

Proof. Due to the fact that

|{u∗ > t}| = |{u > t}|,

the two set {u∗ = t} and {u = t} are respectively the boundaries of two regions
equal in Hn.

By definition, {u∗ > t} is a ball, hence classical isoperimetric inequality implies

Hn−1({u∗ = t}) ≤ Hn−1({u = t}).

Ultimately, we have converted a nontrivial inequality into a direct corollary.
Theorem 11 (Pólya-Szegö Inequality). Let u ∈ C1

0(Rn),∇u ∈ Lp, then for 1 ≤
p ≤ +∞ we have

∥∇u∗∥p ≤ ∥∇u∥p.

Proof. Hölder’s inequality implies

Hn−1({u = t})p =
(∫

{u=t}
dHn−1

)
=

(∫
{u=t}

|∇u|
p−1
p |∇u|−

p−1
p dHn−1

)p

≤
(∫

{u=t}
|∇u|p−1 dHn−1

)(∫
{u=t}

1

|∇u|
dHn−1

)p−1

.

Similarly, we have

Hn−1({u∗ = t})p =
(∫

{u∗=t}
dHn−1

)
=

(∫
{u∗=t}

|∇u∗|
p−1
p |∇u∗|−

p−1
p dHn−1

)p

=

(∫
{u∗=t}

|∇u∗|p−1 dHn−1

)(∫
{u∗=t}

1

|∇u∗|
dHn−1

)p−1
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since the radial symmetry of u∗ leads to the equal sign.
By isoperimetric inequality, we have

Hn−1({u∗ = t})p ≤ Hn−1({u = t})p,

thus ∫ M

0

(∫
{u∗=t}

|∇u∗|p−1

)
≤
∫ M

0

(∫
{u=t}

|∇u|p−1

)
.

The case p = ∞ is obvious, otherwise there is a sufficient large M such that∫
|∇u∗|p =

∫ M

0

(∫
{u∗=t}

|∇u∗|p−1

)
≤
∫ M

0

(∫
{u=t}

|∇u|p−1

)
=

∫
|∇u|p.

3.3 Sharp Sobolev Inequality
As one of the most significant Lp inequality in partial differential equations,
Sobolev inequality unveils the relation between a function and its gradient.

Theorem 12 ((Talenti, 1993)). Fix n and 1 ≤ p < n, and let u be a sufficiently
smooth function that vanishes at infinity. The Sobolev inequality

∥u∥p∗ ≤ C∥∇u∥p

holds for

C =
1

√
πn

1
p

(
p− 1

n− p

)1− 1
p

(
Γ(1 + n

2
)Γ(n)

Γ(n
p
)Γ(1 + n− n

p
)

)
,

and the equality is achieved if and only if

u =
1

(a+ b|x|
p

p−1 )1−
n
p

, a, b > 0.

Remark 10. We can prove Sobolev inequality with only primary calculus and
Hölder’s inequality, but such an approach fails to calculate the best constant C.

14



Proof. As is proved, for p ≥ 1 we have

1. ∥u∗∥p = ∥u∥p,

2. ∥∇u∗∥p ≤ ∥∇u∥p.

Therefore, we only need to prove the inequality for redial function v(r) = v(|x|) =
u∗(x). The norms are simplified to

∥u∗∥p∗ =
(
Hn−1(Sn−1)

∫ +∞

0

|v(r)|p∗rn−1 dr

) 1
p∗

,

∥∇u∗∥p =
(
Hn−1(Sn−1)

∫ +∞

0

|v′(r)|prn−1 dr

) 1
p

.

Let φ ∈ C∞
c (R) be a non-negative function, we shall apply the calculus of

variations as a result of the density of C∞
c . Define

I[v] = Hn−1(Sn−1)
p
p∗−1∥∇u∗∥pp

∥u∗∥pp∗
=

∫ +∞
0

|v′(r)|prn−1 dr(∫ +∞
0

|v(r)|p∗rn−1 dr
) p∗

p

,

and let
d

dε

∣∣∣∣
ε=0

I[v + εφ] = 0

for non-constant v ∈ C1(R).
Since the positiveness of denominator, we only compute the numerator.

0 =

(∫ +∞

0

p|v′ + εφ′|p−2 (v′ + εφ′)φ′rn−1 dr

)(∫ +∞

0

|v + εφ| dr
) p

p∗

− p

p∗

(∫ +∞

0

|v′ + εφ′|prn−1 dr

)(∫ +∞

0

|v + εφ|p∗rn−1 dr

) p
p∗−1

·
(∫ +∞

0

p∗|v + εφ|p∗−2(u+ εφ)φrn−1 dr

)
.

Take ε = 0, and

0 =

(∫ +∞

0

p|v′|p−2v′φ′rn−1 dr

)(∫ +∞

0

|v| dr
) p

p∗

− p

p∗

(∫ +∞

0

|v′|prn−1 dr

)(∫ +∞

0

|v|p∗rn−1 dr

) p
p∗−1(∫ +∞

0

p∗|v|p∗−2uφrn−1 dr

)
.
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Equivalently, we have∫ +∞

0

|v′|p−2v′φ′rn−1 dr =

(∫ +∞
0

|v′|prn−1 dr∫ +∞
0

|v|p∗rn−1 dr

)∫ +∞

0

|v|p∗−2vφrn−1 dr.

Integrating by parts, the left hand side is converted to∫ +∞

0

|v′|p−2v′φ′rn−1 dr = −
∫ +∞

0

(
|v′|p−2v′rn−1

)′
φ dr.

Since the critical point of I[v] is independent of the choice of φ, we have

−
(
|v′|p−2v′rn−1

)′
= C|v|p∗−2vrn−1.

The solutions to this ordinary differential equations are in form of

v(r) =
1

(a+ br
p

p−1 )
n−p
p

, a, b > 0,

namely

u(x) =
1

(a+ b|x|
p

p−1 )
n−p
p

, a, b > 0.

Returning to the original inequality, we obtain the best constant

C =
1

√
πn

1
p

(
p− 1

n− p

)1− 1
p

(
Γ(1 + n

2
)Γ(n)

Γ(n
p
)Γ(1 + n− n

p
)

)
.

There are a lot of inequalities developed from Sobolev inequality, and this con-
stant sometimes plays an indispensable part in some problems such as Yamabe’s
problem.
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