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1 Review
1.1 Pointwise Convergence of Fourier Series
Fourier series is the most classical topic on Fourier analysis. Taylor expansion
makes it possible to approximate elementary functions with polynomials, one of
the simplest variety of functions that admit quantities of practical properties.

Among all kinds of waves, simple harmonic waves are the most common. There-
fore, it is natural to ask whether all strange waveforms with a real physical back-
ground could be approximated by simple harmonic waves, namely sin and cos.
This is actually the origin of Fourier series.

Unfortunately, the answer is “not necessary”. As a result, we need to study
under what condition the Fourier series of a function converges or additionally
converge to the function itself. To calculate the partial sum, we usually apply the
exponential expression according to Euler’s formula

eiθ = cos θ + i sin θ.

Since trigonometric functions on R are periodic, we only need to consider

T = [0, 1]/ ∼

where 0 ∼ 1. As we learned in functional analysis,{
e2nπix | n ∈ Z

}
is an orthogonal basis of in the sense of L2 inner product, thus the Fourier coef-
ficients of f are defined as

f̂(n) =

∫
T
f(x)e2nπix dx.

Now we can introduce the definition of Fourier series.

Definition 1 (Fourier series). The Fourier series associated with f is

f(x) ∼
+∞∑

n=−∞

f̂(n)e2nπix.

Remark 1. L1 functions are preferred here since

|f̂(n)| =
∣∣∣∣∫

T
f(x)e2nπix dx

∣∣∣∣ ≤ ∫
T
|f(x)||e2nπix| dx ≤ ∥f∥1,

which implies the Fourier coefficients are well defined. It is worth mentioning that
Lp(T) ⊂ L1(T) as a result of Hölder’s inequality.
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To study its convergence, we need to start from the partial sum

SNf(x) =
N∑

n=−N

f̂(n)e2kπix = (f ∗DN)(x)

where DN is the N -th Dirichlet kernel

DN(x) =
N∑

n=−N

e2nπix =
sin(2N + 1)πx

sin πx
.

Dirichlet kernel does not possess perfect property as it jumps up and down,
yet it still possesses a few properties.

Theorem 1 (Properties of Dirichlet kernel). Let DN be the Dirichlet kernel, then

1.
∫
TDN = 1;

2. |DN(x)| ≤ Cmin{N, x−1};

3. c logN ≤ ∥Dn∥1 ≤ C logN .

Next two theorems are extended from that introduced in mathematical analy-
sis.

Theorem 2 (Riemann-Lebesgue). High frequency terms tend to vanish, namely

f ∈ L1(T) =⇒ lim
n→∞

f̂(n) = 0.

It implies that the Fourier coefficients of an L1 function belong to C0(Z).

Remark 2. This is still correct for f ∈ L2 as a corollary of Parseval identity.

Theorem 3 (Riemann localization theorem). If f vanishes in a neighborhood of
x, then

lim
N→0

SNf(x) = 0.

Well known to analysts, it is easier to verify whether something tends to 0
rather than a concrete nonzero value. With the assistance of the two theorems
concerned with convergence above, we introduce a classic result as follow.
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Theorem 4 (Dini’s criterion). If for some x ∈ T, there exists δ > 0 such that∫
|t|<δ

∣∣∣∣f(x− t)− f(x)

t

∣∣∣∣ dt < +∞,

then

lim
N→∞

SNf(x) = f(x).

A direct corollary is f ∈ Cα(T) implies that the Fourier series associate with f
converges pointwise to f itself.

Remark 3. Dini’s condition is not far away from the equivalent condition of the
convergence of Fourier series, which has not been discovered.

Dini’s condition cannot represent a specific class of function and we need to
verify it pointwise for a given function and sometimes fails to take effect. For
example, square wave f = χ[ 1

2
,1] is a common wave function, and Dini’s condition

fails at the discontinuous point x = 1
2
. Luckily, we have an more universal criterion

which is still effective for some discontinuous functions.

Theorem 5 (Jordan’s criterion). If f is of bounded variation in a neighborhood
of x, then

lim
N→∞

SNf(x) =
f(x+) + f(x−)

2
.

1.2 Fejér kernel
To obtain the Lp convergence of Fourier series, we need something more regular
than Dirichlet kernels. Since Cesàro mean enjoys better convergence convergence
properties, we introduce another kernel.

Definition 2 (Fej’er kernel). Define Fej’er kernel as the Cesàro mean of Dirichlet
kernel, namely

FN(x) =
1

N + 1

N∑
n=0

Dn(x) =
sin2(N + 1)πx

(N + 1) sin2 πx
.

Similar with Dirichlet kernel, we have

σNf(x) =
1

N + 1

N∑
n=0

SNf(x) = (f ∗ FN)(x).
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The Fejér kernels are a family of approximate identity which satisfies

Theorem 6 (Properties of Fejér kernel). A family of Fejér kernels has following
properties

1. Boundedness: FN ∈ L∞(T);

2. Normalization: FN ≥ 0 and
∫
T FN = 1;

3. Concentration:
∫
|x|>δ

FN(x) dx→ 0 for any δ > 0 as N → ∞.

The last property of approximate identity enables one to split domain of inte-
gration into a small neighborhood of origin and a large region distant from origin,
which leads to the following results.

Theorem 7 (Lp convergence of Fourier series). Let f ∈ X where X = C(T) or
Lp(T) for 1 ≤ p < +∞, then

lim
N

∥f ∗ FN − f∥X = 0,

which also implies that trigonometric polynomials are dense in such a functions
space X. An important corollary is the Parseval identity

∥f∥22 =
∑
n∈Z

|f̂(n)|2

for f ∈ L2(T).

Everything seems to have progressed smoothly for Fejér kernels thanks to the
fine properties of approximate identity. When it comes back to Dirichlet kernels,
we need more powerful conditions to maintain the convergence.

Theorem 8 (Convergence involving Dirichlet kernel). Let X be the function space
defined in last theorem, then SNf converges to f in X if and only if

sup
N

∥SN∥X→X < +∞.

1.3 Properties of Fourier Coefficients
Not all sequences in C0(Z) are the Fourier coefficients of a function. Moreover,
sometimes the special properties of Fourier coefficients reflect that of the original
function.
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Theorem 9 (Bernstein’s inequality). If f ∈ Lp(T) satisfies f̂(n) = 0 where |n| >
N for some N , then

∥f ′∥p ≤ CN∥f∥p.

In that case, a Lp function on torus is differentiable if its Fourier coefficients
belong to Cc(Z). A dual result is

Theorem 10 (Reverse Bernstein’s inequality). If f ∈ Lp(T) and f ′ ∈ Lp(T) then
f̂(n) = 0 for every |n| < N implies

∥f ′∥p ≥ Cn∥f∥p.

Remark 4. Through boostrapping, such conclusions could be extended to higher
derivatives.

Next we introduce some necessary or sufficient conditions under which a se-
quence in C0(Z) is the Fourier coefficients of a function.

Theorem 11 (Symmetric case). For {an}n∈Z ⊂ C0(Z), it is the Fourier coefficients
of a non-negative L1 function if

an = a−n, an+1 + an−1 − 2an ≥ 0.

Theorem 12 (Antisymmetric case). If {an}n∈Z ⊂ C0(Z) such that an = −a−n is
the Fourier coefficients of f ∈ L1(T), then

∞∑
n=1

an
n
< +∞.

Intuitively, a regular function admits regular Fourier coefficients.

Theorem 13 (Regularity of Fourier coefficients). The regularity of Fourier coef-
ficients is given as follow.

1.

f ∈ AC(T) =⇒ f̂(n) ≤ C

n
;

2.

f ∈ Ck(T), f (k) ∈ AC(T) =⇒ |f̂(n)| ≤ min
0≤j≤k

∥f (j)∥1
(2π|n|j)
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3.

f ∈ C∞(T) =⇒ |f̂(n)| ≤ min
k≥0

∥f (k)∥1
(2π|n|k)

4.

f ∈ Cα(T) =⇒ |f̂(n)| ≤ C∥f∥Cα

nα
.

Particularly for analytic function, we have a more elegant result.

Theorem 14. f is analytic if and only if there exist K > 0 and a > 0 such that

|f̂(n)| ≤ Ke−a|n|.

1.4 Fourier Coefficients of a Borel Measure
Recall that we defined the convergence of Borel measures by duality. The same
idea is accessible for Fourier Coefficients.

Definition 3 (Fourier coefficients of µ). Let M(T) be the collection of Borel
measures on torus, then

µ̂(n) =

∫
T
e−2nπix dµ(x).

It enjoys most properties of the Fourier coefficients of a function.

Theorem 15 (Absolute continuity). If dµ = f dx for some f ∈ L1(T), then

µ̂(x) = f̂(n).

Theorem 16 (Young’s inequality). For µ ∈ M(T) and f ∈ C(T), we have

∥f ∗ µ∥p ≤ ∥µ∥∥f∥p,

where

(f ∗ µ)(x) =
∫
T
f(x− y) dµ(y).

Theorem 17 (Weak * convergence). Let {φn}∞n=1 be a family of approximate
identity, then

φn ∗ µ→ µ

in the sense of weak * as n→ ∞.
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Theorem 18 (Parseval identity for measures). Let f ∈ C(T) and µ ∈ M(T), then∫
T
f̄ dµ = ⟨f, µ⟩ = lim

N→∞

N∑
n=−N

(
1− |n|

N

)
f̂(n)µ̂(n).

A direct corollary is that µ̂(n) = 0 for every n implies µ = 0.

Similarly, there is a criterion to identify whether a sequence is the Fourier
coefficients of a measure.

Theorem 19. For a complex sequence {an}n∈Z, there exists µ ∈ M(T) such that
µ̂(n) = an if and only if ∣∣∣∣∣

+∞∑
n=−∞

P̂ (n)an

∣∣∣∣∣ ≤ C∥P∥C(T)

for some constant C independent of the selection of trigonometric polynomial P .

2 Solutions to Homework
2.1 Exercise 7.2.9
(1)

Proof. For an open set U , we have

ν ′(U) = sup

{∫
fφ dµ

∣∣∣∣ψ ∈ Cc(X), 0 ≤ f ≤ 1, supp f ∈ U

}
= sup

{∫
ψ dµ

∣∣∣∣ψ ∈ Cc(X), 0 ≤ ψ ≤ φ, supp ψ ∈ U

}
= sup

{∫
U

ψ dµ

∣∣∣∣ψ ∈ Cc(X), 0 ≤ ψ ≤ φ

}
=

∫
U

φ dµ

= ν(U).
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(2)

Proof. Since φ is continuous, the sets

Vk = φ−1
(
2k−1, 2k+1

)
, k ∈ Z.

are open. Moreover, φ is positive, thus

X =
+∞⋃

k=−∞

Vk.

Let E be a Borel set and define Ek = E ∩ Vk. Note that φ is bounded in Vk,
thus ν is absolutely continuous in respect to µ. Fix ε > 0, there exists δk > 0 such
that

µ(Uk\Ek) < δk =⇒ ν(Uk\Ek) <
ε

3 · 2−|k| .

The outer regularity of µ implies the existence of an open Uk including Ek such
that µ(Uk\Ek) < δk.

Consider the open set

U =
+∞⋃

k=−∞

Uk ⊃
+∞⋃

k=−∞

Ek ⊃ E,

we obtain

ν(U\E) ≤
+∞∑

k=−∞

ν(Uk\Ek) ≤
+∞∑

k=−∞

ε

3 · 2−|k| = ε,

namely the outer regularity of ν.

Remark 5. The preimage φ−1[2k−1, 2k+1] is not necessarily compact since φ−1 is
not necessarily continuous. Therefore, all compactness arguments are incorrect.

The solution did not reflect entire properties of the binary decomposition. As is
shown in a significant proportion of submitted homework, we can utilize the bound

φ(x) < 2k+1, ∀ x ∈ Vk,

and reset

µ(Uk\Ek) <
ε

3 · 2−|k|+k+1
,

which leads to our desired conclusion as well.
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(3)

Proof. Utilize (1) and (2), we obtain

ν(E) = inf{ν(U) | E ⊂ U,U open} = inf{ν ′(U) | E ⊂ U,U open} = ν ′(E)

for every Borel set E.

2.2 Exercise 8.5.35
(1)

Proof. By definition,

φm(f) = Smf(0) =

∫
T
f(y)Dm(−y) dy =

∫
T
f(y)Dm(y) dy.

Therefore,

|φ(f)| ≤
∫
T
|f(y)Dm(y)| dy ≤ sup

x∈T
|f(x)|

∫
T
|Dm(y)| dy = ∥f∥C(T)∥Dm∥1.

In order to achieve the equality, construct a sequence of function {fn}∞n=1 ⊂ C(T)
such that fn → sgn(Dm) pointwise, then dominated convergence theorem implies
the ∥Dm∥1 is exactly the norm.
Remark 6. The equality is achieved when f = sgn(Dm) a discontinuous function,
instead of f = 1, thus we need to approximate it with continuous functions.

Here we can also apply the Riesz representation theorem for Radon mea-
sures and rewrite

φm(f) =

∫
T
f dµ

for Radon measure dµ = Dm dm where m is the Lebesgue measure. Consequently,

∥φm∥ = ∥µ∥ = ∥Dm∥1.

(2)

Proof. Assume the desired set is not meager in C(T), then there is a nonmeager
set in which

sup
m

|φm(f)| < +∞.

The resonance theorem implies

sup
m

∥Dm∥ = sup
m

∥φm∥ < +∞,

a contradiction.
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(3)

Proof. Let {rn}∞n=1 be the sequence of all rational numbers in (0, 1), which is dense
in T while countable. Construct an operator

ψmn(f) = Smf(rn).

Similarly, we can prove that ψmn is bounded and

∥ψmn∥ = ∥Dm∥1.

Let En ⊂ C(T) be the meager set that includes every f such that Smf(rn)
converges as m tends to infinity. As a result, the set including every continuous
function that diverges at all rational numbers

∞⋂
n=1

Ec
n =

(
∞⋃
n=1

En

)c

is the complement of a first category set, hence nonempty by Baire category the-
orem.

Remark 7. In comparison with Fourier analysis, it seems more proper to classify
this problem into functional analysis.

2.3 Exercise 8.5.36
Proof. We first prove Fourier transform

F : L1(T) −→ C0(Z)

f(x) −→
(
· · · , f̂(−1), f̂(0), f̂(1), · · ·

)
is injective. In fact, we only need to show that

f̂(n) = 0, ∀n ∈ Z =⇒ f = 0, a.e.

Let g ∈ C(T), then for every ε > 0, there exists a trigonometric polynomial P
such that

sup
T

|g − P | < ε

∥f∥1
.

As a result, we have∣∣∣∣∫
T
fg dx

∣∣∣∣ ≤ ∣∣∣∣∫
T
fP dx

∣∣∣∣+ ∫
T
|f(g − P )| dx ≤ sup

T
|g − P |

∫
T
|f | < ε.
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Since g is an arbitrary continuous function on T, f equals 0 almost everywhere.
Assume F is also surjective, then it is bijective. Given that F is a bounded

linear operator, by the inverse operator theorem we see that F−1 is still a bounded
linear operator. Note that

D̂m(n) =

∫
T
e−2πinx

m∑
k=−m

e2πikx =

{
1, |n| ≤ m,

0, |n| > m,

thus

∥F(Dm)∥C0(Z) = 1.

However, it contradicts to the boundedness of F−1 that

∥F−1∥ = ∥F−1∥∥F(Dm)∥C0(Z) ≥ ∥F−1F(Dm)∥1 = ∥Dm∥1 → +∞

as m tends to infinity. Therefore, F cannot be surjective.

Remark 8. After verifying that F is injective, there are quite a few approach to
prove F is not surjective, including that induced from inverse operator theorem
shown above. We shall present 3 more profound proofs as follow.

Proof. (Duality)
Assume F is surjective, then it is a bijection from L1(T) to C0(Z). As is known,

∥{f̂(n)}n∈Z∥C0(Z) = sup
n∈Z

|f̂(n)| =
∣∣∣∣∫

T
f(x)e−2nπix dx

∣∣∣∣ ≤ ∥f∥L1(T).

Since both L1(T) and C0(Z) are complete, the equivalent norm theorem implies F
is an isomorphism from L1(T) to C0(Z), which induces an isomorphism between
their dual spaces

F∗ : L∞(T) −→ L1(Z).

However, L1(Z) is separable while L∞(T) is not, a contradiction!

Proof. (Termwise Integration)
For

f̂(n) =

{
0, n ≤ 0,
1

logn
, n ≥ 1,

it is obvious that (
· · · , f̂(−1), f̂(0), f̂(1), · · ·

)
∈ C0(Z).
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Assume f ∈ L1(T), then the termwise integration theorem of Fourier coeffi-
cients implies∫ 1

2

0

f(x) dx =
+∞∑

n=−∞

f̂(n)

∫ 1
2

0

e2nπix dx =
1

2πi

+∞∑
n=1

1

n log n
((−1)n − 1) = +∞,

a contradiction!

Proof. (Antisymmetry)
Construct(

· · · ,− 1

log 3
,− 1

log 2
, 0, 0, 0,

1

log 2
,

1

log 3
· · ·
)

∈ C0(Z).

It cannot be the Fourier coefficients of an L1 function, otherwise
∞∑
n=2

1

n log n
= +∞,

a contradiction!

3 Littlewood-Paley Theory and Its Applications
3.1 Fourier Multiplier
As Prof. Xi-Nan Ma puts, every PDE in the world is solved by either constructing
auxiliary functions and applying maximum principle, or multiplying test functions
and integrating by parts. The function multiplied on both sides of equations is
call a multiplier. As for Fourier analysis, there is a counterpart.

Definition 4 (Fourier multiplier). For m ∈ L∞(Rn), define a linear transform on
L2(Rn) ∩ Lp(Rn) by

(Tmf)
∧(ξ) = m(ξ)f̂(ξ),

then m is a Fourier multiplier if

∥Tmf∥p ≤ C∥f∥p, ∀ f ∈ L2(Rn) ∩ Lp(Rn).

A typical Fourier multiplier operator is Hilbert transform that we introduced
in the third tutorial since

(Hf)∧(ξ) = (−isgn(ξ))f̂(ξ).

Here we need a special decomposition to proceed.
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Theorem 20 (Radial partition of unity). There exist ψ ∈ C∞
c (Rn) such that

+∞∑
j=−∞

ψ(2−jx) = 1, ∀ x ̸= 0.

And for a fixed x ̸= 0, only finitely many terms in this sum is nonzero.

Proof. Let η ∈ C∞
c (Rn) be the mollifier such that

ηB1(0) = 1, ηB2(0)c = 0, 0 ≤ η ≤ 1.

Set ψ(x) = η(x)− η(2x), then

N∑
j=−N

ψ(2−jx) = η(2−Nx)− η(2N+1x) → 1

as N tends to infinity. It is easy to check that as most two terms are nonzero for
any fixed x.

To prove Littlewood-Paley theorem, we need a theorem concerned with the
properties of Fourier multipliers.

Theorem 21 (Hörmander-Mikhlin). If m : Rn\{0} → C satisfies

|∂αm(ξ)| ≤ B|ξ|−α, ∀, ξ ̸= 0

for all multi-indices |α| ≤ n+ 2, then

∥(mf̂)∨∥ ≤ CB∥f∥p, ∀1 < p < +∞, f ∈ S(Rn).

Proof. For ψj(x) = ψ(2−jx), set

mj = ψjm

and consider

K =
N∑

j=−N

Kj =
N∑

j=−N

m̌j.

We shall prove an estimate

|∇K(x)| ≤ CB|x|−n−1
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where C depends only on dimension n. Actually, the condition implies

|∂αmj(ξ)| ≤ CB2−j|α|

and thus

∥∂αmj∥1 ≤ CB2−j|α|2jn.

Similarly, we have

∥∂α(ξimj)∥1 ≤ CB2−j(|α|−1)2jn.

Therefore, the boundedness of Fourier transform implies

∥ξα∇m̌j∥∞ ≤ CB2−j(|α|−n−1).

For |α| = k, we thus have

∥∇m̌j∥∞ ≤ CB2−j(|α|−n−1)|x|−|α|.

Back to the inequality,

|∇K(x)| ≤
N∑

j=−N

|∇m̌j(x)|

≤
∑

j:2−j≥|x|

|∇m̌j(x)|+
∑

j:2−j<|x|

|∇m̌j(x)|

≤ CB
∑

j:2−j≥|x|

2j(n+1) +
∑

j:2−j<|x|

2−j|x|−n−2

≤ CB|x|−n−1 + CB|x||x|−n−2

= CB|x|−n−1.

Here C is independent of N since we sum the geometric series before substituting
the power of 2 with |x|. Therefore, it is correct even if N tends to infinity.

Similarly, we can verify the boundedness condition

|K(x)| ≤ CB|x|−n

and the cancellation condition as is recorded in the lecture notes of the third
tutorial. Hence K induces a Caldéron-Zygmund singular integral Operator
T in convolution type, which is strong type (p, p) for 1 < p < +∞, and

∥(mf̂)∨∥ = ∥Tf∥p ≤ CB∥f∥p.
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3.2 Littlewood-Paley Square Function
For p = 2, Parseval’s identity implies

∥f∥2 = ∥(
∑

|fj|2)
1
2∥2

where fj = fχ[2j ,2j+1]. However, such an conclusion fails for lack of inner product
structure.

The radical reason is that characteristic functions are “stiff”, they cannot cut
up a function “regularly”. However, sometimes it is necessary to split “low and
high frequency term” in the research of hyperbolic equations, especially water wave
equations and dispersive equations. As a result, we need a substitute.

Definition 5 (Littlewood-Paley square function). Define

Pjf = (ψj f̂)
∨ = f ∗ ψ̌j,

and we call

Sf =

(∑
j∈Z

|Pjf |2
) 1

2

the Littlewood-Paley square function of f .

Before introduce the main theorem, we still need a theorem from probability
theory.

Theorem 22 (Kkinchin). Let {rn}Nn=1 be a sequence of independent and identically
distributed random variables such that

P (wn = 1) = P (wn = −1) =
1

2
,

then there exist constants c, C depending only on p such that

c

(
N∑

n=1

|an|2
) p

2

≤ E

(∣∣∣∣∣
N∑

n=1

anwn

∣∣∣∣∣
p)

≤ C

(
N∑

n=1

|an|2
) p

2

for complex {an}Nn=1.

Proof. We omit the proof here since it is totally an exercise in probability theory.
Interested students please refer to Schlag’s textbooks.
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Theorem 23 (Littlewood-Paley). The norms ∥f∥p and ∥Sf∥p are equivalent,
where

∥Sf∥p =

(∑
j∈Z

∥f∥p

) 1
2

.

Proof. Let {wn} be a sequence of independent and identically distributed random
variables such that

P (wn = 1) = P (wn = −1) =
1

2
,

then

m(ξ) =
N∑

j=−N

wjψj(ξ)

satisfies the condition of Hörmander-Mikhlin theorem since

|∂αm(ξ)| ≤
∑
j≤|N |

|wj∂
αψj(ξ)|

≤
∑
|j|≤N

2−j|α||(∂αψ)(2−jξ)|

≤ C
∑
|j|≤N

|ξ|−|α||(∂αψ)(2−jξ)|

≤ C|ξ|−|α|∥∂αψ∥∞.

By Mikhlin’s theorem, we have

∫
|Sf |p =

∫
lim

N→∞

∑
|j|≤N

|Pjf |2


p
2

≤ lim
N→∞

∫ ∑
|j|≤N

|Pjf |2


p
2

≤ Cp lim
N→∞

∫
E

∑
|j|≤N

|wjPjf |p
 .
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By Fubini’s theorem, we further have

lim
N→∞

∫
E

∑
|j|≤N

|wjPjf |p
 = lim

N→∞
E

∫ ∑
|j|≤N

|wjPjf |p


= lim
N→∞

E

∫ ∑
|j|≤N

|(wjψj f̂)
∨|p


≤ lim
N→∞

E

∫ ∑
|j|≤N

|(ψj f̂)
∨|p


≤ ∥f∥pp.

The conclusion of Hörmander-Mikhlin theorem is applied in the final step.
We shall prove the other inequality by duality. Set another mollifier ψ̃ that

equals to 1 on the support of ψ, then

ψ̃jψj = ψj =⇒ P̃jPj = Pj

where P̃jf = (ψ̃j f̂)
∨.

For 1 < p < +∞ and f, g ∈ S, we have

|⟨f, g⟩| =

∣∣∣∣∣⟨∑
j∈Z

Pjf, g⟩

∣∣∣∣∣ =
∣∣∣∣∣∑
j∈Z

⟨Pjf, g⟩

∣∣∣∣∣ =
∣∣∣∣∣∑
j∈Z

⟨P̃jPjf, g⟩

∣∣∣∣∣ =
∣∣∣∣∣∑
j∈Z

⟨Pjf, P̃jg⟩

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ (∑

j∈Z

|Pjf |2
) 1

2
(∑

j∈Z

|P̃jg|2
) 1

2

∣∣∣∣∣∣ ≤ ∥Sf∥p∥S̃g∥p′ ≤ Cp∥Sf∥p∥g∥p′ .

By the duality property of Lp norm, we have

∥f∥p ≤ Cp∥Sf∥p.

3.3 Applications in Hyperbolic PDEs
In case some students have not mastered the theories of weak solutions, we define
general Sobolev spaces.

Definition 6 (Sobolev space). For multi-index α, if the weak derivative ∂αu
exists and belongs to Lp as long as |α| ≤ k, then u belongs the Banach space W k,p

18



where

∥u∥Wk,p =

∑
|α|≤k

∥∂αu∥pp

 1
p

.

Particularly, W k,2 is a Hilbert space, hence we usually denote

Hk = W k,2.

Remark 9. If you are not clear about the concept of weak derivatives, just ignore
it, which is not essential.

The space W k,p is indispensable in the theory of elliptic equations. However,
some times it is not adequate for hyperbolic equations. As is introduced in class,
fractional derivatives are well-defined by Fourier transform.

Definition 7 (Fractional Sobolev space). For any s ∈ R, consider the following
norms

∥u∥Hs = ∥⟨ξ⟩sû∥2,
∥u∥Ḣs = ∥|ξ|sû∥2.

The fractional Sobolev spaces Hs and Ḣs are respectively the completion of S under
these two norms.

Remark 10. The definition of Hs is compatible with some general Sobolev spaces
as a result of Plancherel theorem of Sobolev inequality (introduced in the fourth
tutorial). In fact,

Hs = Hk
0 , ∀ s = k = 1, 2, · · · ,

where Hk
0 is the closure of C∞

0 functions in Hk.
In fact, Ḣs is a larger function space than Hs as the former somehow admits

a worse singularity at origin.

The space Ḣs established the fundamental structure of dispersive equations.
Since Sobolev embedding is of great importance in elliptic theories, we wish to
construct something similar.

Theorem 24 (Sobolev inequality for Hs). For u ∈ Hs(Rn), we have

∥u∥p ≤ C(s, n, p)∥u∥Hs , ∀ 2 ≤ p ≤ +∞, s >
n

2
.
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Proof. Cauchy inequality implies

∥u∥∞ ≤ ∥û∥1 ≤ ∥⟨ξ⟩−s∥2∥⟨ξ⟩sû∥2 = C∥u∥Hs .

It is obvious that

∥u∥2 ≤ ∥û∥2 ≤ ∥⟨ξ⟩sû∥2,

thus Riesz-Thorin interpolation theorem implies the theorem.

Actually, we have similar conclusions for Ḣs, however, the argument above
fails. The Littlewood-Paley decomposition is a must here.
Theorem 25 (Sobolev inequality for Ḣs). Given 0 ≤ s < d

2
and

1

2
− 1

p
=
s

n
,

we have

∥u∥p ≤ C(n, p)∥u∥Ḣs

for u ∈ Ḣs(Rn).
Proof. We only need to prove this inequality for u ∈ S(Rn).

Initially, assume û is supported in a dyadic annulus

{ξ | 2j ≤ |ξ| ≤ 2j+1}.

Since û = χ[2j ,2j+1]û, Young’s inequality implies

∥u∥p ≤ C(n)2jn(
1
2
− 1

p
)∥u∥2 ≤ C(n)2js∥û∥2 = C(n)∥u∥Ḣs .

For general u, apply Littlewood-Paley theorem.

∥u∥2p ≤ C(n, p)
∑
j∈Z

∥Pju∥2p

≤ C(n, p)
∑
j∈Z

∥Pju∥2Ḣs

≤ C(n, p)
∑
j∈Z

∥|ξ|sψjû∥22

≤ C(n, p)∥|ξ|sû∥22
= C(n, p)∥u∥22.

Remark 11. General Sobolev inequality implies Rellish-Kondrachov theorem. Sim-
ilarly, Ḣs is compacted embedded into Lp for proper s and p.
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