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1 Review
1.1 More Properties of Lp Space
As a variety of special Banach spaces, Lp spaces in possess of quantities of prop-
erties are widely researched in linear functional analysis.

Theorem 1 (Duality). The dual space of a Banach space X is composed of all
bounded linear functionals on X, denoted as X∗. For 1 ≤ p < +∞, the dual space
of Lp is isometric with Lp′. In fact, the linear mapping

φ : Lp′ → (Lp)∗,

g → Tg

is an isometry. Here Tg maps f into
∫
fg.

Particularly, the operator norm of T equals the Lp′ norm of g. In other words

∥g∥p′ = ∥Tg∥ = sup
∥f∥p=1

∣∣∣∣∫ fg

∣∣∣∣ .
This conclusion is correct for p = +∞ as well if the measure is semifinite.

Remark 1. This theorem does not apply to L∞, since L1 ⊂ (L∞)∗ strictly. Ac-
tually (L∞(Rn))∗ = BMO(Rn). The Bounded Mean Oscillation space is a
collection of all L1

loc functions finite under the BMO norm

∥f∥BMO = sup
Q

1

|Q|

∫
Q

|f − fQ| .

Here fQ is the average of f on Q, which is

fQ =
1

|Q|

∫
Q

f,

and the supermum is taken over all cubes Q in Rn.
Interested students please refer to other textbooks such as GTM 250.

Other properties also shows the particularity of L1 and L∞, the “two ends” of
[1,+∞].

Theorem 2 (Reflexivity). For 1 < p < +∞, the Lp space is reflexive. In other
words, Lp is isometric with the (Lp)∗∗, the second dual space.

Remark 2. With reflexivity, Banach-Alaoglu theorem admits a weakly con-
vergent subsequence in every bounded sequence.
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Theorem 3 (Separability). For 1 ≤ p < +∞, the Lp space is separable. In other
words, there is a countable subset dense in Lp.

Remark 3. In fact, there is a sequence of simple or smooth Lp functions approx-
imate a given Lp function in Lp norm if p < +∞. However, there does not exist
a countable subset dense in L∞.

In practice, some functions are so irregular that they are not even in Lp. For
example, f(x) = 1

|x| does not belong to any Lp space. Meanwhile, some common
operators, like Hardy-Littlewood maximal operator, fail to be strong type
(p, p) for every 1 ≤ p ≤ +∞. Therefore, we introduce a kind of weaker function
spaces.

Definition 1 (Weak Lp space). Define weak Lp norm

∥f∥p,∞ =

(
sup
λ>0

λpµ ({|f | > λ})
)p

,

then the weak Lp space includes all functions whose weak Lp norms are finite,
denoted as Lp,∞.

Remark 4. For 1 ≤ p ≤ +∞, we have Lp ⊂ Lp,∞. Particularly, L∞ = L∞,∞.

As we know, the essence of Lebesgue integration is splitting the area not ver-
tically but horizontally. There is an important formula that convert an Lp norm
into an integral with respect to the upper level set.

Theorem 4 (Layer cake representation). Let f be a Lp function for 1 ≤ p < +∞,
then ∫

|f |p dµ =

∫ ∞

0

pλp−1µ ({|f | > λ}) dλ.

Remark 5. This widely applied formula that should be born in mind. One possible
proof comes from Fubini theorem.

1.2 Lp Inequalities
Besides Hölder’s inequality and its corollaries, there are still a lot of useful in-
equalities concerned with Lp spaces. To prove that convergence in Lp implies
convergence in measure, we need

Theorem 5 (Chebbyshev’s inequality). For f ∈ Lp and α > 0, we have

µ ({|f | > λ}) ≤
(
∥f∥p
λ

)p

.
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This inequality often take effects on Lp,∞.
Besides the triangular inequality in Lp, there is another inequality named after

Minkowski.

Theorem 6 (Minkowski’s inequality for integrals). For 1 ≤ p < +∞ and non-
negative f , we have(∫ (∫

f(x, y) dν(y)

)
dµ(x)

) 1
p

≤
∫ (∫

(f(x, y))p dµ(x)

)
dν(x).

Let f(·, y) ∈ Lp(µ) for almost every y and 1 ≤ p ≤ +∞. If y → ∥f(·, y)∥p
belongs to L1(ν), then f(x, ·) ∈ L1(ν) for almost every x, and∣∣∣∣∣∣∣∣∫ f(·, y) dν(y)

∣∣∣∣∣∣∣∣
p

≤
∫

∥f(·, y)∥p dν(y).

Functions resembling 1
x+y

usually fail to possess useful integration properties.
However, it is improved through multiplying with a Lp functions before integrating.
Literally, we call K(x, y) a (−1)-homogeneous function or kernel if K(x, y) =
λK(λx, λy) for positive λ.

Theorem 7. Let (x, y) be a (−1)-homogeneous function such that∫ +∞

0

|K(x, 1)|x−
1
p dx = C < +∞, p ∈ [1,+∞].

For f ∈ Lp and g ∈ Lp′, define two operators T and S by

Tf(y) =

∫ ∞

0

K(x, y)f(x) dx,

Sg(x) =

∫ ∞

0

K(x, y)g(y) dy,

then T and S are bounded. To specify, we have

∥Tf∥p ≤ C∥f∥p,
∥Sg∥p′ ≤ C∥g∥p′ .

Finally, we introduce an inequality that does not look so “regular”.

Theorem 8 (Hardy’s inequality). Let

Tf(y) =
1

y

∫ y

0

f(x) dx,

Sg(x) =

∫ +∞

x

g(y)

y
dy.
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Then we have the following inequalities for 1 < p ≤ +∞,

∥Tf∥p ≤
p

p− 1
∥f∥p,

∥Sg∥p′ ≤ p′∥g∥p′ .

Remark 6. There is a discrete Hardy’s inequality. For p > 1 and non-negative
x1, · · · , xn, we have

n∑
k=1

(
1

k

k∑
j=1

xj

)
≤
(

p

p− 1

)p ∞∑
k=1

xpk.

1.3 Interpolation Theorems
The interpolation theorems play an indispensable role in the boundedness of oper-
ators, especially singular integral operators. The proofs are sophisticated, so just
remember the statements and applications.

Theorem 9 (Marcinkiewicz interpolation theorem). Abstract 1 ≤ p0, p1, q0, q1 ≤
+∞ such that p0 ≤ q0, p1 ≤ q1, q0 ̸= q1 and

1

p
=

1− t

p0
+

t

p1
,

1

q
=

1− t

q0
+

t

q1
.

If a sublinear operator T is weak type (p0, q0) and (p1, q1), then T is strong type
(p, q).

Theorem 10 (Riesz-Thorin interpolation theorem). Let T be a linear operator
and p0, p1, q0, q1 defined in the theorem above. If T satisfies

∥Tf∥q0 ≤M0∥f∥p0 ,
∥Tf∥q1 ≤M1∥f∥p1 ,

then

∥Tf∥q ≤M1−t
0 M t

1∥f∥p

Remark 7. In the latter theorem, we have stricter requirements for T but looser
requirements for p0, p1, q0, q1.
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2 Solutions to Homework
2.1 Exercise 6.1.9
Proof. Fix a ε > 0, we have

µ{|fn − f | ≥ ε} =
1

εp

∫
{|fn−f |p≥εp}

εp dµ

=
1

εp

∫
{|fn−f |p≥εp}

|fn − f |p dµ

≤ 1

εp

∫
X

|fn − f |p dµ

→ 0, n→ ∞.

Conversely, assume {fn}∞n=1 does not converge to f in Lp, then there is a
subsequence {gn}∞n=1 ⊂ {fn}∞n=1 such that ∃ ε0 > 0,

∥gn − f∥p ≥ ε, ∀n.

Since gn → f in measure, there is a subsequence {hn}∞h=1 ⊂ {gn}∞n=1 that
converges to f almost everywhere. Dominant convergence theorem implies hn → f
in Lp, a contradiction.

Remark 8. Actually, a series is convergent if and only if every subsequence of it
possesses a convergent subsequence. We proved this proposition by contradiction.

2.2 Exercise 6.1.10
Proof. =⇒:

The triangle inequality implies

|∥fn∥p − ∥f∥p| ≤ ∥fn − f∥p → 0, n→ ∞.

⇐=:
As for the inverse proposition, we shall verify a primary inequality first

|a± b|p ≤ 2p−1 (|a|p + |b|p) , ∀, p ≥ 1.

In fact, it is equivalent with ∣∣∣∣a± b

2

∣∣∣∣p ≤ 1

2
|a|p + 1

2
|b|p,
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a consequence of the convexity of function f(x) = |x|p for p ≥ 1.
Back to the point, construct

gn = 2p−1 (|fn|p + |f |p)

that converges to g = |2f |p ∈ L1 almost everywhere. Since |fn − f |p ≤ gn, the
dominant convergence theorem implies

lim
n→∞

∫
|fn − f |p =

∫
lim
n→∞

|fn − f |p = 0 =⇒ lim
n→∞

∥fn∥p = ∥f∥p.

Remark 9. A generalization of this conclusion is called Brezis-Lieb Lemma,

∥u+ vj∥pp = ∥u∥pp + ∥vj∥pp + o(1)

for vj → 0 in Lp. It is a fundamental technique in calculus of variations.

2.3 Exercise 6.1.15
Proof. =⇒:

The completeness of Lp space implies {fn}∞n=1 converges to some f ∈ Lp, and
the first two conclusions are immediate due to our previous homework.

As for the third, consider an increasing sequence of sets

Em =

{
|fn| ≥

1

m

}
for fixed n. Obviously, µ(Em) is finite since fn ∈ Lp. Additionally, note that∫

E

|fn|p =
∫

|fn|p < +∞,

where

E =
∞⋃

m=1

Em = {|fn| ≥ 0}.

Due to the fact that |fnχEc
m
| ≤ fn ∈ Lp, we can apply the dominant convergence

theorem,

lim
m→∞

∥fn∥Lp(Ec
m) = lim

m→∞

(∫
Ec

m

|fn|p
) 1

p

=

(
lim

m→∞

∫
|fn|pχEc

m

) 1
p

=

(∫
Ec

|fn|
) 1

p

= 0.
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As a result, ∀ ε > 0, ∃m > 0, such that

∥fn∥pLp(Ec
m) < ε =⇒

∫
Ec

m

|fn|p < ε,

while µ(Ec
m) < +∞.

⇐=:
Let {fn}∞n=1 be a sequence of Lp functions in possession of the three properties.

For a fixed ∀ ε > 0, consider the sets

Amn = E ∩

{
|fm − fn| ≥

ε
1
p

3
1
pµ(E)

}
.

Here E is of finite measure and∫
Ec

|fn|p <
(ε
3

)p
, ∀n.

Provided with such conditions, we have∫
E\Amn

|fm − fn|p ≤
∫
E\Amn

ε

3µ(E)
=
εµ(E\Amn)

3µ(E)
≤ ε

3
.

Since {fn}∞n=1 is Cauchy in measure, we assume µ(Amn) < δ is small in measure
for sufficiently large m,n. As a result,∫

Amn

|fm − fn|n ≤ 2p−1

∫
Amn

|fm|p + 2p−1

∫
Amn

|fn|p ≤
ε

3
.

The last inequality is correct for sufficiently small δ as a consequence of the uniform
integrability of {fn}∞n=1.

Combine the inequalities above, we ultimately obtain

∥fm − fn∥p ≤
(∫

Ec

|fm − fn|p +
∫
E\Amn

|fm − fn|p +
∫
Amn

|fm − fn|p
)

≤ ε.

Remark 10. According to the hint, we only need to focus on the reasons why the 3
parts are arbitrarily small. It is natural to think of applying the absolute continuity
of integral to the construction of E.

However, it is interesting to consider how to construct a sequence of increasing
sets of finite measure that approximates X. Note that X is not necessarily a
metric space, it is pointless to define a family of homocentric balls {Bn(0)}∞n=1

with increasing radiuses. Meanwhile, we have no idea whether X is σ-finite, thus
we cannot just claim there are a sequence of sets of finite increasing measure that
finally fills X.
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Exercise 6.3.29
Proof. Set a (−1)-homogeneous function K(x, y) = xβ−1y−βχ(0,+∞)(y − x), which
satisfies ∫ +∞

0

|K(1, y)|y−
1
p dy =

∫ +∞

1

xβ−1− 1
p =

1

1− βp
< +∞, β <

1

p
.

For f(x) = xγh(x), we have

∥Tf∥p ≤
1

1− βp
∥f∥p, T f(x) =

∫ +∞

0

K(x, y)f(y) dy.

By Theorem 6.20, we have∫ +∞

0

(∫ +∞

0

xβ−1yγ−βh(y)χ(0,+∞)(y − x) dy

)p

dx ≤ 1

(1− βp)p

∫ +∞

0

xγp(h(x))p dx,

which implies∫ +∞

0

xp(β−1)

(∫ +∞

x

yγ−βh(y) dy

)p

dx ≤ 1

(1− βp)p

∫ +∞

0

xγp(h(x))p dx.

Let β = γ = 1+ r−1
p

, and we obtain one of the inequalities. Swapping x and y
in K, we similarly achieve the other inequality.

2.4 Exercise 6.3.29
Proof. Set a (−1)-homogeneous function K(x, y) = xβ−1y−βχ(0,+∞)(y − x), which
satisfies ∫ +∞

0

|K(1, y)|y−
1
p dy =

∫ +∞

1

xβ−1− 1
p =

1

1− βp
< +∞, β <

1

p
.

For f(x) = xγh(x), we have

∥Tf∥p ≤
1

1− βp
∥f∥p, T f(x) =

∫ +∞

0

K(x, y)f(y) dy.

By Theorem 6.20, we have∫ +∞

0

(∫ +∞

0

xβ−1yγ−βh(y)χ(0,+∞)(y − x) dy

)p

dx ≤ 1

(1− βp)p

∫ +∞

0

xγp(h(x))p dx,

which implies∫ +∞

0

xp(β−1)

(∫ +∞

x

yγ−βh(y) dy

)p

dx ≤ 1

(1− βp)p

∫ +∞

0

xγp(h(x))p dx.

Let β = γ = 1+ r−1
p

, and we obtain one of the inequalities. Swapping x and y
in K, we similarly achieve the other inequality.
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Remark 11. The characteristic function χ[0,1](y − x) offers an x to the limit of
the inner integral.

2.5 Exercise 6.4.36
Proof. For q < p, we have∫

|f |q dµ =

∫ +∞

0

qλq−1µ ({|f | > λ}) dλ

≤ q

∫ 1

0

λq−1µ ({f ̸= 0}) dλ+ q∥f∥pp,∞
∫ +∞

1

λq−p−1 dλ

= µ ({f ̸= 0}) + q

p− q
∥f∥pp,∞

< +∞.

For q > p, let ∥f∥∞ =M < +∞, then∫
|f |q dµ =

∫ M

0

qλq−1µ ({|f | > λ}) dλ

≤ q∥f∥pp,∞
∫ M

0

λq−p−1 dλ

=
q

q − p
M q−p

< +∞.

Remark 12. Layer cake representation is always the most immediate formula that
bridges strong and weak Lp spaces.

3 Boundedness Singular Integral Operator
As learned in section 6.3, there are a quantity of Lp inequalities, some of which
are concerned with a kernel function K(x, y). In practice, operators in the form of

(Tu)(x) =

∫
K(x, y)u(y) dy

are common, like Green function and the convolution with approximation
identity.

Particularly, if K(x, y) admits a singularity, we call T a singular integral
operator. Cardéron and Zygmund established a systematic theory in singular
integral operators, including its boundedness, which is always related to the solv-
ability and uniqueness issue of partial differential equations.
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3.1 Caldéron-Zygmund Decomposition
To introduce this theory, we need a basic knowledge of the famous Caldéron-
Zygmund decomposition, decomposing a function into a good part and a bad
yet “small” part.

Theorem 11 (Caldéron-Zygmund decomposition for L1 functions). For f ∈
L1(Rn) and λ > 0, there is a decomposition f = g + b where

b =
∑
Q∈B

fχQ,

and B is a countable collection of disjoint cubes. Moreover, we have

1. |g| ≤ λ almost everywhere;

2. the average integral of f is bounded,

λ <
1

|Q|

∫
Q

|f | ≤ 2nλ;

3. The union of the cubes is not too large,∣∣∣∣∣ ⋃
Q∈B

Q

∣∣∣∣∣ < 1

λ
∥f∥L1 .

Proof. Consider the collection of all binary cubes

Bk =

{
n∏

j=1

[2kmj, 2
k(mj + 1))

∣∣∣∣∣m1, · · · ,mn ∈ Z

}
, k ∈ Z.

For Q1 ∈ Bk1 and Q2 ∈ Bk@ , it is easy to figure out the fact Q1 ∩ Q2 = ∅ or one
of them contains the other. Meanwhile, the union of Bk over k ∈ Z is countable.

Since f ∈ L1, there is a sufficiently large k0 ∈ Z such that

1

|Q|

∫
Q

|f | ≤ λ, ∀Q ∈ Bk0 .

Actually, every Q ∈ Bk0 is composed of 2n small cubes whose edges are 2k0−1 in
length.

Let Q′ be one of those small cubes. If

1

|Q′|

∫
Q′
|f | > λ,
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then we add Q′ to the set B, and notice that

λ <
1

|Q′|

∫
Q′
|f | ≤ 1

|Q′|

∫
Q

|f | ≤ λ|Q|
|Q′|

= 2nλ.

Otherwise, continue to divide this small cube into 2n even smaller cubes. This
process ends in countable steps.

Ultimately, set

b =
∑
Q∈B

fχQ, g = f − b,

which satisfy the first two requirements with the help of Lebesgue differentiation
theorem. Moreover, for Q ∈ B, we have∫

Q

|f | > λ|Q| =⇒

∣∣∣∣∣ ⋃
Q∈B

Q

∣∣∣∣∣ ≤ 1

λ
∥f∥L1 .

3.2 Hilbert Transform
If K = K(x − y), we name T as a convolutional singular integral opera-
tor, which usually enjoys better properties. The Hilbert transform is a classic
convolutional singular integral operator.
Definition 2 (Hilbert transform). Let φ ∈ C∞

c (R), then

Hεφ(x) =

∫
|x−y|>ε

φ(y)

x− y
dy.

We define Hilbert transform with the limit

Hφ = lim
ε→0+

Hεφ.

We must verify that H is well-defined in the beginning. Thanks to the smooth-
ness of φ, we have

|Hφ(x)| = lim
ε→0+

∣∣∣∣∫
ε≤|x−y|≤1

φ(y)

x− y
dy

∣∣∣∣+ ∣∣∣∣∫
|x−y|>1

φ(y)

x− y
dy

∣∣∣∣
≤ lim

ε→0+

∫
ε≤|x−y|≤1

∣∣∣∣φ(x)− φ(y)

x− y

∣∣∣∣ dy + ∫
|x−y|>1

∣∣∣∣ φ(y)x− y

∣∣∣∣ dy
≤ 2∥φ′∥L∞ + ∥φ∥L1 .

As an application of interpolation theorems, we can obtain the boundedness of
Hilbert transform. Beforehand, we need two lemmas.

12



Lemma 1 (The Fourier transform of Hilbert operator). For f ∈ L2, we have

(Hf)∧(ξ) = −isgn(ξ)f̂(ξ).

The proof is elementary but complicated, so we omit it here. Interested stu-
dents please search the friendly website.

Lemma 2 (Multiplication formula of Fourier transform). Let f, g ∈ L1(R), then∫
f̂g =

∫
fĝ.

Proof. By Fubini’s theorem, we have∫
f̂(ξ)g(ξ) dξ =

∫ (∫
f(x)e−2πixξ dx

)
g(ξ) dξ

=

∫ (∫
g(ξ)e−2πixξ dξ

)
f(x) dx

=

∫
f(x)ĝ(x) dx

Lemma 3 (Multiplication formula of Hilbert transform). Let φ, ψ ∈ C∞
c (R), then∫

(Hf)g = −
∫
f(Hg).

Proof. For φ, ψ ∈ C∞
c (R), we have∫

(Hφ)ψ =

∫
(Hφ) ˆ̌ψ =

∫
(Hφ)∧ψ̌

= −i
∫

sgn(ξ)φ̂(ξ)ψ̌(ξ) dξ

= i

∫
sgn(ζ)φ̂(−ζ)ψ̌(−ζ) dζ

= i

∫
sgn(ζ)φ̌(ζ)ψ̂(ζ) dζ

= −
∫
φ̌(Hψ)∧ = −

∫
φ(Hψ).

Now we can present a proof of the boundedness of H.
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Theorem 12. Hilbert transform is weak type (1, 1) and strong type (p, p) for
1 < p < +∞.

Proof. For φ ∈ C∞
c , the first two lemmas imply

∥Hφ∥L2 = ∥(Hφ)∧∥L2 = ∥ − isgn(ξ)φ̂(ξ)∥L2 = ∥φ̂∥L2 = ∥φ∥L2 .

Therefore, the operator H : L2 → L2 is an isometry.
Next we shall prove that H is weak type (1, 1). Apply Cardéron-Zygmund

decomposition to f ∈ L1, we obtain a collection of countable binary intervals
B = {Ij}, and

g(x) =

{
f(x), x /∈

⋃
j Ij

1
|Ij |

∫
Ij
f, x ∈ Ij,

b(x) =
∑
j

bj(x) =
∑
j

(
f(x)− 1

|Ij|

∫
Ij

f

)
χIj .

which is slightly different from the original definition. Here |g| ≤ 2λ almost ev-
erywhere.

Therefore, we split f into two parts

|{|Hf | > λ}| ≤
∣∣∣∣{|Hg| > λ

2

}∣∣∣∣+ ∣∣∣∣{|Hb| > λ

2

}∣∣∣∣ ,
and estimate them separately.

For the first part, Chebbyshev’s inequality implies∣∣∣∣{|Hg| > λ

2

}∣∣∣∣ ≤ 4

λ2

∫
|Hg|2 = 4

λ2

∫
|g|2 ≤ 8

λ

∫
|g| = 8

λ

∫
|f | < +∞.

For the second part, we need more sophisticated estimates. Denote 2Ij be the
interval homocentric with Ij such that |2Ij| = 2|Ij| and

Ω =
⋃
j

2Ij, |Ω| ≤ 2

∣∣∣∣∣⋃
j

Ij

∣∣∣∣∣
It is obvious that∣∣∣∣{|Hb| > λ

2

}∣∣∣∣ ≤ |Ω|+
∣∣∣∣{x /∈ Ω

∣∣∣∣|Hb(x)| > λ

2

}∣∣∣∣ ≤ 2

λ
∥f∥L1 +

2

λ

∫
Ωc

|Hb|.
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Additionally, let cj be the center of 2Ij, then∫
Ωc

|Hb| =
∫
Ωc

∣∣∣∣∣H
(∑

j

bj

)∣∣∣∣∣ ≤∑
j

∫
Ωc

|Hbj| ≤
∑
j

∫
(2Ij)c

|Hbj|,

and ∫
(2Ij)c

|Hbj| =
1

π

∫
(2Ij)c

∣∣∣∣ limε→0+

∫
|x−y|>ε

bj(y)

x− y
dy

∣∣∣∣ dx
=

1

π

∫
(2Ij)c

∣∣∣∣∣
∫
Ij

bj(y)

x− y
dy

∣∣∣∣∣ dx
=

1

π

∫
(2Ij)c

∣∣∣∣∣
∫
Ij

bj(y)

(
1

x− y
− 1

x− cj

)
dy

∣∣∣∣∣ dx
≤ 1

π

∫
Ij

(∫
(2Ij)c

∣∣∣∣bj(y)( 1

x− y
− 1

x− cj

)∣∣∣∣ dx
)
dy

=
1

π

∫
Ij

|bj(y)|

(∫
(2Ij)c

|y − cj|
|x− y||x− cj|

dx

)
dy

≤ 1

π

∫
Ij

|bj(y)|

(∫
(2Ij)c

|Ij|
|x− cj|2

dx

)
dy

=
2

π

∫
Ij

|bj|.

The last inequality is a corollary of the fact

|y − cj| ≤
1

2
|Ij| =⇒ |x− cj| ≤ |y − cj|+ |x− y| ≤ 1

2
|Ij|+ |x− y| ≤ 2|x− y|.

By the definition of bj, we have∑
j

∫
(2Ij)c

|Hbj| ≤
2

π

∑
j

∫
Ij

|bj| ≤
4

π

∑
j

∫
Ij

|f | ≤ 4

π
∥f∥L1 .

In summary, we finally obtain

λ|{|Hf | > λ}| ≤
(
10 +

8

π

)
∥f∥L1 .

So far, we have shown that H is strong type (2, 2) and strong type (1, 1).
Therefore, Marcinkiewicz interpolation theorem implies H is strong type (p, p) for
1 < p ≤ 2.
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When is comes to the case 2 < p < p′, consider its conjugate index p′ ∈ (1, 2).
Recall that we can define Lp norm through duality

∥Hf∥Lp = sup
φ∈C∞

c (R)
∥φ∥p′≤1

∣∣∣∣∫ (Hf)φ

∣∣∣∣
= sup

φ∈C∞
c (R)

∥φ∥p′≤1

∣∣∣∣∫ f(Hφ)

∣∣∣∣
≤ ∥f∥Lp sup

φ∈C∞
c (R)

∥φ∥p′≤1

∥Hφ∥Lp

≤ C∥f∥Lp sup
φ∈C∞

c (R)
∥φ∥p′≤1

∥φ∥Lp

= C∥f∥Lp .

Remark 13. In fact, f is not strong type (1, 1) or (∞,∞). Direct computation
implies

Hχ[0,1] =
1

π
log

∣∣∣∣ x

x− 1

∣∣∣∣ ,
which belongs to neither L1 nor L∞.

This theorem implies we can extend the domain of H from C∞
c (R) to Lp for

1 < p < +∞ as a result of density of C∞
c (R).

The proof is so comprehensive that it utilized quite a lot of knowledge in-
structed in this course, including but not limited to

1. definition of strong and weak Lp spaces;

2. Chebbyshev’s inequality;

3. monotonous convergence theorem;

4. Fubini’s theorem;

5. Interpolation theorem;

6. Duality of Lp;

7. density of C∞
c ;

8. Fourier transform;

9. · · · · · ·
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3.3 A Couple of General Theories
Due to time limit, we only introduce some important conclusions on boundedness
about general singular integral operators, including convolutional and nonconvo-
lutional types.
Definition 3 (Caldéron-Zygmund kernel). A function K(x) defined on Rn\{0} is
a Caldéron-Zygmund kernel if it satisfies

1. (size condition) |K(x)| ≤ B|x|−n;

2. (smoothness condition)∫
|x|≥2|y|

|K(x− y)−K(x)| dx ≤ B;

3. (cancellation condition)∫
a<|x|<b

K(x) dx = 0, ∀ 0 < r < s < +∞.

Here B is an absolute constant. Then we define the convolutional Caldéron-
Zygmund operator

Tf(x) = lim
ε→0+

∫
|x−y|>ε

K(x− y)f(y) dy.

Some theories of Fourier transform imply that T is weak type (1, 1) and strong
type (p, p) for 1 < p < +∞), but not necessarily strong type (1, 1) or (∞,∞).

The prove is a bit more interesting. We can prove T is strong type (p, p) for
every 1 ≤ p < +∞, and thus interpolation implies T is strong type (q, q) for
1 < q < p. Therefore, given a p0, we can always pick a larger p > p0 to achieve
strong type (p0, p0).

For the endpoints, we can actually introduce the Hardy space and BMO
space, and figure out T : H1 → L1 and T : L∞ → BMO are bounded.
Definition 4 (Standard kernel). A function K(x, y) defined on

(Rn × Rn)\{(x, x) | x ∈ Rn}

is a standard kernel if it satisfies

K(x, y) ≤ A

|x− y|n
,

|K(x1, y)−K(x2, y)| ≤
A|x1 − x2|

(|x1 − y|+ |x2 − y|n+δ)
,

|K(x, y1)−K(x, y2)| ≤
A|y1 − y2|

(|x− y1|+ |x− y2|n+δ)
,

17



for some constants A > 0, δ > 0. Define the operator associated with the kernel
K(x, y) by

Tf(x) =

∫
K(x, y)f(y) dy.

Such singular integral operators of nonconvolution type enjoy similar bound-
edness properties as we states previously, but the proof is much more challenging.
The boundedness issue is always a popular topic in modern Fourier analysis, and
also necessary in plenty of PDE theories.
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