Advanced Real Analysis Tutorial 03

Yu Junao

October 27, 2024

Contents

1 Review

1.1 More Properties of *L ^p* **Space**

As a variety of special Banach spaces, L^p spaces in possess of quantities of properties are widely researched in linear functional analysis.

Theorem 1 (Duality)**.** *The dual space of a Banach space X is composed of all bounded linear functionals on X, denoted as* X^* *. For* $1 \leq p < +\infty$ *, the dual space of* L^p *is isometric with* $L^{p'}$ *. In fact, the linear mapping*

$$
\varphi: L^{p'} \to (L^p)^*,
$$

$$
g \to T_g
$$

is an isometry. Here T_g *maps* f *into* $\int f g$.

Particularly, the operator norm of T equals the $L^{p'}$ *norm of g. In other words*

$$
||g||_{p'} = ||T_g|| = \sup_{||f||_p=1} \left| \int fg \right|.
$$

This conclusion is correct for $p = +\infty$ *as well if the measure is semifinite.*

Remark 1. *This theorem does not apply to* L^{∞} *, since* $L^{1} \subset (L^{\infty})^*$ *strictly. Actually* $(L^{\infty}(\mathbb{R}^n))^* = BMO(\mathbb{R}^n)$. The **Bounded Mean Oscillation** space is a *collection of all* L^1_{loc} *functions finite under the BMO norm*

$$
||f||_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f - f_{Q}|.
$$

Here f^Q is the average of f on Q, which is

$$
f_Q = \frac{1}{|Q|} \int_Q f,
$$

and the supermum is taken over all cubes Q in \mathbb{R}^n .

Interested students please refer to other textbooks such as GTM 250.

Other properties also shows the particularity of L^1 and L^{∞} , the "two ends" of $[1, +\infty]$.

Theorem 2 (Reflexivity). For $1 < p < +\infty$, the L^p space is reflexive. In other *words,* L^p *is isometric with the* $(L^p)^{**}$ *, the second dual space.*

Remark 2. *With reflexivity, Banach-Alaoglu theorem admits a weakly convergent subsequence in every bounded sequence.*

Theorem 3 (Separability). For $1 \leq p < +\infty$, the L^p space is separable. In other words, there is a countable subset dense in L^p .

Remark 3. In fact, there is a sequence of simple or smooth L^p functions approx*imate a given* L^p *function in* L^p *norm if* $p < +\infty$ *. However, there does not exist a countable subset dense in* L^{∞} *.*

In practice, some functions are so irregular that they are not even in L^p . For example, $f(x) = \frac{1}{|x|}$ does not belong to any L^p space. Meanwhile, some common operators, like **Hardy-Littlewood maximal operator**, fail to be strong type (p, p) for every $1 \leq p \leq +\infty$. Therefore, we introduce a kind of weaker function spaces.

Definition 1 (Weak L^p space). Define weak L^p norm

$$
||f||_{p,\infty} = \left(\sup_{\lambda>0} \lambda^p \mu\left(\{|f| > \lambda\}\right)\right)^p,
$$

then the weak L^p *space includes all functions whose weak* L^p *norms are finite, denoted as* $L^{p,\infty}$ *.*

Remark 4. For $1 \leq p \leq +\infty$, we have $L^p \subset L^{p,\infty}$. Particularly, $L^{\infty} = L^{\infty,\infty}$.

As we know, the essence of Lebesgue integration is splitting the area not vertically but horizontally. There is an important formula that convert an L^p norm into an integral with respect to the **upper level set**.

Theorem 4 (Layer cake representation). Let f be a L^p function for $1 \leq p < +\infty$, *then*

$$
\int |f|^p \, \mathrm{d}\mu = \int_0^\infty p \lambda^{p-1} \mu \left(\{|f| > \lambda \} \right) \mathrm{d}\lambda.
$$

Remark 5. *This widely applied formula that should be born in mind. One possible proof comes from Fubini theorem.*

1.2 *L p* **Inequalities**

Besides Hölder's inequality and its corollaries, there are still a lot of useful inequalities concerned with L^p spaces. To prove that convergence in L^p implies convergence in measure, we need

Theorem 5 (Chebbyshev's inequality). For $f \in L^p$ and $\alpha > 0$, we have

$$
\mu\left(\{|f| > \lambda\}\right) \le \left(\frac{\|f\|_p}{\lambda}\right)^p.
$$

This inequality often take effects on $L^{p,\infty}$.

Besides the triangular inequality in L^p , there is another inequality named after Minkowski.

Theorem 6 (Minkowski's inequality for integrals). For $1 \leq p < +\infty$ and non*negative f, we have*

$$
\left(\int \left(\int f(x,y) \, \mathrm{d}\nu(y)\right) \mathrm{d}\mu(x)\right)^{\frac{1}{p}} \leq \int \left(\int (f(x,y))^p \, \mathrm{d}\mu(x)\right) \mathrm{d}\nu(x).
$$

Let $f(\cdot, y) \in L^p(\mu)$ for almost every y and $1 \leq p \leq +\infty$. If $y \to ||f(\cdot, y)||_p$ *belongs to* $L^1(\nu)$ *, then* $f(x, \cdot) \in L^1(\nu)$ *for almost every x, and*

$$
\left| \left| \int f(\cdot, y) \, \mathrm{d}\nu(y) \right| \right|_{p} \leq \int \|f(\cdot, y)\|_{p} \, \mathrm{d}\nu(y).
$$

Functions resembling $\frac{1}{x+y}$ usually fail to possess useful integration properties. However, it is improved through multiplying with a L^p functions before integrating. Literally, we call $K(x, y)$ a (-1)-homogeneous function or kernel if $K(x, y)$ = *λK*(λ *x*, λ *y*) for positive λ .

Theorem 7. *Let* (*x, y*) *be a* (*−*1)*-homogeneous function such that*

$$
\int_0^{+\infty} |K(x,1)| x^{-\frac{1}{p}} dx = C < +\infty, \ p \in [1, +\infty].
$$

For $f \in L^p$ *and* $g \in L^{p'}$, *define two operators T and S by*

$$
Tf(y) = \int_0^\infty K(x, y) f(x) dx,
$$

\n
$$
Sg(x) = \int_0^\infty K(x, y) g(y) dy,
$$

then T and S are bounded. To specify, we have

$$
||Tf||_p \le C||f||_p,
$$

$$
||Sg||_{p'} \le C||g||_{p'}.
$$

Finally, we introduce an inequality that does not look so "regular".

Theorem 8 (Hardy's inequality)**.** *Let*

$$
Tf(y) = \frac{1}{y} \int_0^y f(x) dx,
$$

$$
Sg(x) = \int_x^{+\infty} \frac{g(y)}{y} dy.
$$

Then we have the following inequalities for $1 < p \leq +\infty$,

$$
||Tf||_p \le \frac{p}{p-1} ||f||_p,
$$

$$
||Sg||_{p'} \le p'||g||_{p'}.
$$

Remark 6. *There is a discrete Hardy's inequality. For p >* 1 *and non-negative* x_1, \cdots, x_n *, we have*

$$
\sum_{k=1}^n \left(\frac{1}{k}\sum_{j=1}^k x_j\right) \le \left(\frac{p}{p-1}\right)^p \sum_{k=1}^\infty x_k^p.
$$

1.3 Interpolation Theorems

The interpolation theorems play an indispensable role in the boundedness of operators, especially singular integral operators. The proofs are sophisticated, so just remember the statements and applications.

Theorem 9 (Marcinkiewicz interpolation theorem). *Abstract* $1 \leq p_0, p_1, q_0, q_1 \leq$ $+\infty$ *such that* $p_0 \leq q_0, p_1 \leq q_1, q_0 \neq q_1$ *and*

$$
\frac{1}{p} = \frac{1-t}{p_0} + \frac{t}{p_1},
$$

$$
\frac{1}{q} = \frac{1-t}{q_0} + \frac{t}{q_1}.
$$

If a sublinear operator T is weak type (p_0, q_0) *and* (p_1, q_1) *, then T is strong type* (*p, q*)*.*

Theorem 10 (Riesz-Thorin interpolation theorem)**.** *Let T be a linear operator* and p_0, p_1, q_0, q_1 defined in the theorem above. If T satisfies

$$
||Tf||_{q_0} \le M_0 ||f||_{p_0},
$$

$$
||Tf||_{q_1} \le M_1 ||f||_{p_1},
$$

then

$$
||Tf||_q \le M_0^{1-t} M_1^t ||f||_p
$$

Remark 7. *In the latter theorem, we have stricter requirements for T but looser requirements for* p_0, p_1, q_0, q_1 .

2 Solutions to Homework

2.1 Exercise 6.1.9

Proof. Fix $a \varepsilon > 0$, we have

$$
\mu\{|f_n - f| \ge \varepsilon\} = \frac{1}{\varepsilon^p} \int_{\{|f_n - f|^p \ge \varepsilon^p\}} \varepsilon^p d\mu
$$

$$
= \frac{1}{\varepsilon^p} \int_{\{|f_n - f|^p \ge \varepsilon^p\}} |f_n - f|^p d\mu
$$

$$
\le \frac{1}{\varepsilon^p} \int_X |f_n - f|^p d\mu
$$

$$
\to 0, \quad n \to \infty.
$$

Conversely, assume $\{f_n\}_{n=1}^{\infty}$ does not converge to *f* in L^p , then there is a subsequence $\{g_n\}_{n=1}^{\infty} \subset \{f_n\}_{n=1}^{\infty}$ such that $\exists \varepsilon_0 > 0$,

$$
||g_n - f||_p \ge \varepsilon, \,\forall \, n.
$$

Since $g_n \to f$ in measure, there is a subsequence $\{h_n\}_{n=1}^{\infty} \subset \{g_n\}_{n=1}^{\infty}$ that converges to *f* almost everywhere. Dominant convergence theorem implies $h_n \to f$ in L^p , a contradiction. \Box

Remark 8. *Actually, a series is convergent if and only if every subsequence of it possesses a convergent subsequence. We proved this proposition by contradiction.*

2.2 Exercise 6.1.10

Proof. =*⇒*:

The triangle inequality implies

$$
|\|f_n\|_p - \|f\|_p| \le \|f_n - f\|_p \to 0, \ n \to \infty.
$$

⇐=:

As for the inverse proposition, we shall verify a primary inequality first

$$
|a \pm b|^p \le 2^{p-1} (|a|^p + |b|^p), \ \forall, p \ge 1.
$$

In fact, it is equivalent with

$$
\left|\frac{a\pm b}{2}\right|^p\leq \frac{1}{2}|a|^p+\frac{1}{2}|b|^p,
$$

a consequence of the convexity of function $f(x) = |x|^p$ for $p \ge 1$.

Back to the point, construct

$$
g_n = 2^{p-1} (|f_n|^p + |f|^p)
$$

that converges to $g = |2f|^p \in L^1$ almost everywhere. Since $|f_n - f|^p \leq g_n$, the dominant convergence theorem implies

$$
\lim_{n \to \infty} \int |f_n - f|^p = \int \lim_{n \to \infty} |f_n - f|^p = 0 \Longrightarrow \lim_{n \to \infty} ||f_n||_p = ||f||_p.
$$

Remark 9. *A generalization of this conclusion is called Brezis-Lieb Lemma,*

$$
||u + v_j||_p^p = ||u||_p^p + ||v_j||_p^p + o(1)
$$

for $v_j \to 0$ *in* L^p . It is a fundamental technique in calculus of variations.

2.3 Exercise 6.1.15

 $Proof. \implies$

The completeness of L^p space implies $\{f_n\}_{n=1}^{\infty}$ converges to some $f \in L^p$, and the first two conclusions are immediate due to our previous homework.

As for the third, consider an increasing sequence of sets

$$
E_m = \left\{ |f_n| \ge \frac{1}{m} \right\}
$$

for fixed *n*. Obviously, $\mu(E_m)$ is finite since $f_n \in L^p$. Additionally, note that

$$
\int_E |f_n|^p = \int |f_n|^p < +\infty,
$$

where

$$
E = \bigcup_{m=1}^{\infty} E_m = \{ |f_n| \ge 0 \}.
$$

Due to the fact that $|f_n \chi_{E_m^c}| \leq f_n \in L^p$, we can apply the dominant convergence theorem,

$$
\lim_{m \to \infty} ||f_n||_{L^p(E_m^c)} = \lim_{m \to \infty} \left(\int_{E_m^c} |f_n|^p \right)^{\frac{1}{p}} = \left(\lim_{m \to \infty} \int |f_n|^p \chi_{E_m^c} \right)^{\frac{1}{p}} = \left(\int_{E^c} |f_n| \right)^{\frac{1}{p}} = 0.
$$

As a result, $\forall \varepsilon > 0$, $\exists m > 0$, such that

$$
||f_n||_{L^p(E_m^c)}^p < \varepsilon \Longrightarrow \int_{E_m^c} |f_n|^p < \varepsilon,
$$

while $\mu(E_m^c) < +\infty$. *⇐*=:

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of L^p functions in possession of the three properties. For a fixed $\forall \varepsilon > 0$, consider the sets

$$
A_{mn} = E \cap \left\{ |f_m - f_n| \ge \frac{\varepsilon^{\frac{1}{p}}}{3^{\frac{1}{p}} \mu(E)} \right\}.
$$

Here *E* is of finite measure and

$$
\int_{E^c} |f_n|^p < \left(\frac{\varepsilon}{3}\right)^p, \ \forall \, n.
$$

Provided with such conditions, we have

$$
\int_{E\setminus A_{mn}}|f_m - f_n|^p \le \int_{E\setminus A_{mn}}\frac{\varepsilon}{3\mu(E)} = \frac{\varepsilon\mu(E\setminus A_{mn})}{3\mu(E)} \le \frac{\varepsilon}{3}.
$$

Since ${f_n}_{n=1}^{\infty}$ is Cauchy in measure, we assume $\mu(A_{mn}) < \delta$ is small in measure for sufficiently large *m, n*. As a result,

$$
\int_{A_{mn}} |f_m - f_n|^n \le 2^{p-1} \int_{A_{mn}} |f_m|^p + 2^{p-1} \int_{A_{mn}} |f_n|^p \le \frac{\varepsilon}{3}.
$$

The last inequality is correct for sufficiently small δ as a consequence of the uniform integrability of $\{f_n\}_{n=1}^{\infty}$.

Combine the inequalities above, we ultimately obtain

$$
||f_m - f_n||_p \le \left(\int_{E^c} |f_m - f_n|^p + \int_{E \setminus A_{mn}} |f_m - f_n|^p + \int_{A_{mn}} |f_m - f_n|^p \right) \le \varepsilon.
$$

Remark 10. *According to the hint, we only need to focus on the reasons why the* 3 *parts are arbitrarily small. It is natural to think of applying the absolute continuity of integral to the construction of E.*

However, it is interesting to consider how to construct a sequence of increasing sets of finite measure that approximates X. Note that X is not necessarily a metric space, it is pointless to define a family of homocentric balls ${B_n(0)}_{n=1}^\infty$ *with increasing radiuses. Meanwhile, we have no idea whether X is σ-finite, thus we cannot just claim there are a sequence of sets of finite increasing measure that finally fills X.*

Exercise 6.3.29

Proof. Set a (-1)-homogeneous function $K(x, y) = x^{\beta-1}y^{-\beta}\chi_{(0, +\infty)}(y-x)$, which satisfies

$$
\int_0^{+\infty} |K(1,y)| y^{-\frac{1}{p}} dy = \int_1^{+\infty} x^{\beta - 1 - \frac{1}{p}} = \frac{1}{1 - \beta p} < +\infty, \ \beta < \frac{1}{p}.
$$

For $f(x) = x^{\gamma}h(x)$, we have

$$
||Tf||_p \le \frac{1}{1 - \beta p} ||f||_p, Tf(x) = \int_0^{+\infty} K(x, y) f(y) dy.
$$

By **Theorem 6.20**, we have

$$
\int_0^{+\infty} \left(\int_0^{+\infty} x^{\beta-1} y^{\gamma-\beta} h(y) \chi_{(0,+\infty)}(y-x) dy \right)^p dx \leq \frac{1}{(1-\beta p)^p} \int_0^{+\infty} x^{\gamma p} (h(x))^p dx,
$$

which implies

$$
\int_0^{+\infty} x^{p(\beta-1)} \left(\int_x^{+\infty} y^{\gamma-\beta} h(y) \, \mathrm{d}y \right)^p \, \mathrm{d}x \le \frac{1}{(1-\beta p)^p} \int_0^{+\infty} x^{\gamma p} (h(x))^p \, \mathrm{d}x.
$$

Let $\beta = \gamma = 1 + \frac{r-1}{p}$, and we obtain one of the inequalities. Swapping *x* and *y* in *K*, we similarly achieve the other inequality. \Box

2.4 Exercise 6.3.29

Proof. Set a (-1)-homogeneous function $K(x, y) = x^{\beta-1}y^{-\beta}\chi_{(0, +\infty)}(y-x)$, which satisfies

$$
\int_0^{+\infty} |K(1,y)|y^{-\frac{1}{p}} dy = \int_1^{+\infty} x^{\beta - 1 - \frac{1}{p}} = \frac{1}{1 - \beta p} < +\infty, \ \beta < \frac{1}{p}.
$$

For $f(x) = x^{\gamma}h(x)$, we have

$$
||Tf||_p \le \frac{1}{1-\beta p} ||f||_p, Tf(x) = \int_0^{+\infty} K(x,y)f(y) dy.
$$

By **Theorem 6.20**, we have

$$
\int_0^{+\infty} \left(\int_0^{+\infty} x^{\beta-1} y^{\gamma-\beta} h(y) \chi_{(0,+\infty)}(y-x) dy \right)^p dx \le \frac{1}{(1-\beta p)^p} \int_0^{+\infty} x^{\gamma p} (h(x))^p dx,
$$

which implies

 \iint

$$
\int_0^{+\infty} x^{p(\beta-1)} \left(\int_x^{+\infty} y^{\gamma-\beta} h(y) dy \right)^p dx \le \frac{1}{(1-\beta p)^p} \int_0^{+\infty} x^{\gamma p} (h(x))^p dx.
$$

Let $\beta = \gamma = 1 + \frac{r-1}{p}$, and we obtain one of the inequalities. Swapping *x* and *y* in *K*, we similarly achieve the other inequality. \Box **Remark 11.** *The characteristic function* $\chi_{[0,1]}(y-x)$ *offers an x to the limit of the inner integral.*

2.5 Exercise 6.4.36

Proof. For $q < p$, we have

$$
\int |f|^q d\mu = \int_0^{+\infty} q\lambda^{q-1} \mu(\{|f| > \lambda\}) d\lambda
$$

\n
$$
\leq q \int_0^1 \lambda^{q-1} \mu(\{f \neq 0\}) d\lambda + q \|f\|_{p,\infty}^p \int_1^{+\infty} \lambda^{q-p-1} d\lambda
$$

\n
$$
= \mu(\{f \neq 0\}) + \frac{q}{p-q} \|f\|_{p,\infty}^p
$$

\n
$$
< +\infty.
$$

For $q > p$, let $||f||_{\infty} = M < +\infty$, then

$$
\int |f|^q d\mu = \int_0^M q\lambda^{q-1} \mu (\{|f| > \lambda\}) d\lambda
$$

\n
$$
\leq q \|f\|_{p,\infty}^p \int_0^M \lambda^{q-p-1} d\lambda
$$

\n
$$
= \frac{q}{q-p} M^{q-p}
$$

\n
$$
< +\infty.
$$

 \Box

Remark 12. *Layer cake representation is always the most immediate formula that bridges strong and weak L p spaces.*

3 Boundedness Singular Integral Operator

As learned in section 6.3, there are a quantity of L^p inequalities, some of which are concerned with a kernel function $K(x, y)$. In practice, operators in the form of

$$
(Tu)(x) = \int K(x, y)u(y) \, dy
$$

are common, like **Green function** and the convolution with **approximation identity**.

Particularly, if $K(x, y)$ admits a singularity, we call T a **singular integral operator**. Cardéron and Zygmund established a systematic theory in singular integral operators, including its boundedness, which is always related to the solvability and uniqueness issue of partial differential equations.

3.1 Caldéron-Zygmund Decomposition

To introduce this theory, we need a basic knowledge of the famous **Caldéron-Zygmund decomposition**, decomposing a function into a good part and a bad yet "small" part.

Theorem 11 (Caldéron-Zygmund decomposition for L^1 functions). For $f \in$ $L^1(\mathbb{R}^n)$ *and* $\lambda > 0$ *, there is a decomposition* $f = g + b$ *where*

$$
b=\sum_{Q\in B}f\chi_{Q},
$$

and B is a countable collection of disjoint cubes. Moreover, we have

- *1.* $|g| \leq \lambda$ *almost everywhere;*
- *2. the average integral of f is bounded,*

$$
\lambda < \frac{1}{|Q|} \int_Q |f| \le 2^n \lambda;
$$

3. The union of the cubes is not too large,

$$
\left|\bigcup_{Q\in B}Q\right|<\frac{1}{\lambda}\|f\|_{L^1}.
$$

Proof. Consider the collection of all binary cubes

$$
B_k = \left\{ \prod_{j=1}^n [2^k m_j, 2^k (m_j + 1)) \middle| m_1, \cdots, m_n \in \mathbb{Z} \right\}, \ k \in \mathbb{Z}.
$$

For $Q_1 \in B_{k_1}$ and $Q_2 \in B_{k_{\mathbb{Q}}}$, it is easy to figure out the fact $Q_1 \cap Q_2 = \emptyset$ or one of them contains the other. Meanwhile, the union of B_k over $k \in \mathbb{Z}$ is countable.

Since $f \in L^1$, there is a sufficiently large $k_0 \in \mathbb{Z}$ such that

$$
\frac{1}{|Q|}\int_Q|f|\leq \lambda, \ \forall Q\in B_{k_0}.
$$

Actually, every $Q \in B_{k_0}$ is composed of 2^n small cubes whose edges are 2^{k_0-1} in length.

Let *Q′* be one of those small cubes. If

$$
\frac{1}{|Q'|}\int_{Q'}|f|>\lambda,
$$

then we add *Q′* to the set *B*, and notice that

$$
\lambda < \frac{1}{|Q'|} \int_{Q'} |f| \le \frac{1}{|Q'|} \int_Q |f| \le \frac{\lambda |Q|}{|Q'|} = 2^n \lambda.
$$

Otherwise, continue to divide this small cube into 2^n even smaller cubes. This process ends in countable steps.

Ultimately, set

$$
b = \sum_{Q \in B} f \chi_Q, \ g = f - b,
$$

which satisfy the first two requirements with the help of Lebesgue differentiation theorem. Moreover, for $Q \in B$, we have

$$
\int_{Q}|f|>\lambda|Q|\Longrightarrow\left|\bigcup_{Q\in B}Q\right|\leq\frac{1}{\lambda}\|f\|_{L^{1}}.
$$

 \Box

3.2 Hilbert Transform

If $K = K(x - y)$, we name *T* as a **convolutional singular integral operator**, which usually enjoys better properties. The Hilbert transform is a classic convolutional singular integral operator.

Definition 2 (Hilbert transform). Let $\varphi \in C_c^{\infty}(\mathbb{R})$, then

$$
H^{\varepsilon}\varphi(x) = \int_{|x-y|>\varepsilon} \frac{\varphi(y)}{x-y} \, \mathrm{d}y.
$$

We define Hilbert transform with the limit

$$
H\varphi = \lim_{\varepsilon \to 0^+} H^{\varepsilon}\varphi.
$$

We must verify that *H* is well-defined in the beginning. Thanks to the smoothness of φ , we have

$$
|H\varphi(x)| = \lim_{\varepsilon \to 0^+} \left| \int_{\varepsilon \le |x-y| \le 1} \frac{\varphi(y)}{x-y} dy \right| + \left| \int_{|x-y| > 1} \frac{\varphi(y)}{x-y} dy \right|
$$

$$
\le \lim_{\varepsilon \to 0^+} \int_{\varepsilon \le |x-y| \le 1} \left| \frac{\varphi(x) - \varphi(y)}{x-y} \right| dy + \int_{|x-y| > 1} \left| \frac{\varphi(y)}{x-y} \right| dy
$$

$$
\le 2 \|\varphi'\|_{L^\infty} + \|\varphi\|_{L^1}.
$$

As an application of interpolation theorems, we can obtain the boundedness of Hilbert transform. Beforehand, we need two lemmas.

Lemma 1 (The Fourier transform of Hilbert operator). For $f \in L^2$, we have

$$
(Hf)^{\wedge}(\xi) = -isgn(\xi)\hat{f}(\xi).
$$

The proof is elementary but complicated, so we omit it here. Interested students please search the friendly website.

Lemma 2 (Multiplication formula of Fourier transform). Let $f, g \in L^1(\mathbb{R})$, then

$$
\int \hat{f}g = \int f\hat{g}.
$$

Proof. By Fubini's theorem, we have

$$
\int \hat{f}(\xi)g(\xi) d\xi = \int \left(\int f(x)e^{-2\pi ix\xi} dx \right) g(\xi) d\xi
$$

$$
= \int \left(\int g(\xi)e^{-2\pi ix\xi} d\xi \right) f(x) dx
$$

$$
= \int f(x)\hat{g}(x) dx
$$

 \Box

Lemma 3 (Multiplication formula of Hilbert transform). Let $\varphi, \psi \in C_c^{\infty}(\mathbb{R})$, then

$$
\int (Hf)g = -\int f(Hg).
$$

Proof. For $\varphi, \psi \in C_c^{\infty}(\mathbb{R})$, we have

$$
\int (H\varphi)\psi = \int (H\varphi)\dot{\psi} = \int (H\varphi)^{\wedge}\check{\psi}
$$

$$
= -i\int \operatorname{sgn}(\xi)\hat{\varphi}(\xi)\check{\psi}(\xi) d\xi
$$

$$
= i\int \operatorname{sgn}(\zeta)\hat{\varphi}(-\zeta)\check{\psi}(-\zeta) d\zeta
$$

$$
= i\int \operatorname{sgn}(\zeta)\check{\varphi}(\zeta)\hat{\psi}(\zeta) d\zeta
$$

$$
= -\int \check{\varphi}(H\psi)^{\wedge} = -\int \varphi(H\psi).
$$

 \Box

Now we can present a proof of the boundedness of *H*.

Theorem 12. *Hilbert transform is weak type* $(1,1)$ *and strong type* (p, p) *for* 1 *< p <* +*∞.*

Proof. For $\varphi \in C_c^{\infty}$, the first two lemmas imply

$$
||H\varphi||_{L^2} = ||(H\varphi)^{\wedge}||_{L^2} = || - i \text{sgn}(\xi)\hat{\varphi}(\xi)||_{L^2} = ||\hat{\varphi}||_{L^2} = ||\varphi||_{L^2}.
$$

Therefore, the operator $H: L^2 \to L^2$ is an isometry.

Next we shall prove that *H* is weak type (1*,* 1). Apply Cardéron-Zygmund decomposition to $f \in L^1$, we obtain a collection of countable binary intervals $B = \{I_j\}$, and

$$
g(x) = \begin{cases} f(x), & x \notin \bigcup_j I_j \\ \frac{1}{|I_j|} \int_{I_j} f, & x \in I_j, \end{cases}
$$

$$
b(x) = \sum_j b_j(x) = \sum_j \left(f(x) - \frac{1}{|I_j|} \int_{I_j} f \right) \chi_{I_j}.
$$

which is slightly different from the original definition. Here $|g| \leq 2\lambda$ almost everywhere.

Therefore, we split *f* into two parts

$$
|\{|Hf| > \lambda\}| \le \left| \left\{ |Hg| > \frac{\lambda}{2} \right\} \right| + \left| \left\{ |Hb| > \frac{\lambda}{2} \right\} \right|,
$$

and estimate them separately.

For the first part, Chebbyshev's inequality implies

$$
\left|\left\{|Hg|>\frac{\lambda}{2}\right\}\right|\leq\frac{4}{\lambda^2}\int|Hg|^2=\frac{4}{\lambda^2}\int|g|^2\leq\frac{8}{\lambda}\int|g|=\frac{8}{\lambda}\int|f|<+\infty.
$$

For the second part, we need more sophisticated estimates. Denote $2I_j$ be the interval homocentric with I_j such that $|2I_j| = 2|I_j|$ and

$$
\Omega = \bigcup_j 2I_j, \ |\Omega| \le 2 \left| \bigcup_j I_j \right|
$$

It is obvious that

$$
\left| \left\{ |Hb| > \frac{\lambda}{2} \right\} \right| \leq |\Omega| + \left| \left\{ x \notin \Omega \, \middle| \, |Hb(x)| > \frac{\lambda}{2} \right\} \right| \leq \frac{2}{\lambda} \|f\|_{L^1} + \frac{2}{\lambda} \int_{\Omega^c} |Hb|.
$$

Additionally, let c_j be the center of $2I_j$, then

$$
\int_{\Omega^c} |Hb| = \int_{\Omega^c} \left| H\left(\sum_j b_j\right) \right| \leq \sum_j \int_{\Omega^c} |Hb_j| \leq \sum_j \int_{(2I_j)^c} |Hb_j|,
$$

and

$$
\int_{(2I_j)^c} |Hb_j| = \frac{1}{\pi} \int_{(2I_j)^c} \left| \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} \frac{b_j(y)}{x-y} dy \right| dx
$$

\n
$$
= \frac{1}{\pi} \int_{(2I_j)^c} \left| \int_{I_j} \frac{b_j(y)}{x-y} dy \right| dx
$$

\n
$$
= \frac{1}{\pi} \int_{(2I_j)^c} \left| \int_{I_j} b_j(y) \left(\frac{1}{x-y} - \frac{1}{x-c_j} \right) dy \right| dx
$$

\n
$$
\leq \frac{1}{\pi} \int_{I_j} \left(\int_{(2I_j)^c} \left| b_j(y) \left(\frac{1}{x-y} - \frac{1}{x-c_j} \right) \right| dx \right) dy
$$

\n
$$
= \frac{1}{\pi} \int_{I_j} |b_j(y)| \left(\int_{(2I_j)^c} \frac{|y-c_j|}{|x-y||x-c_j|} dx \right) dy
$$

\n
$$
\leq \frac{1}{\pi} \int_{I_j} |b_j(y)| \left(\int_{(2I_j)^c} \frac{|I_j|}{|x-c_j|^2} dx \right) dy
$$

\n
$$
= \frac{2}{\pi} \int_{I_j} |b_j|.
$$

The last inequality is a corollary of the fact

$$
|y - c_j| \le \frac{1}{2}|I_j| \Longrightarrow |x - c_j| \le |y - c_j| + |x - y| \le \frac{1}{2}|I_j| + |x - y| \le 2|x - y|.
$$

By the definition of b_j , we have

$$
\sum_{j} \int_{(2I_j)^c} |Hb_j| \leq \frac{2}{\pi} \sum_{j} \int_{I_j} |b_j| \leq \frac{4}{\pi} \sum_{j} \int_{I_j} |f| \leq \frac{4}{\pi} ||f||_{L^1}.
$$

In summary, we finally obtain

$$
\lambda \left| \left\{ \left| Hf \right| > \lambda \right\} \right| \leq \left(10 + \frac{8}{\pi} \right) \| f \|_{L^{1}}.
$$

So far, we have shown that *H* is strong type $(2, 2)$ and strong type $(1, 1)$. Therefore, Marcinkiewicz interpolation theorem implies H is strong type (p, p) for $1 < p \leq 2$.

When is comes to the case $2 < p < p'$, consider its conjugate index $p' \in (1, 2)$. Recall that we can define L^p norm through duality

$$
||Hf||_{L^{p}} = \sup_{\varphi \in C_{c}^{\infty}(\mathbb{R}) \atop ||\varphi||_{p'} \le 1} \left| \int (Hf)\varphi \right|
$$

\n
$$
= \sup_{\varphi \in C_{c}^{\infty}(\mathbb{R}) \atop ||\varphi||_{p'} \le 1} \left| \int f(H\varphi) \right|
$$

\n
$$
\le ||f||_{L^{p}} \sup_{\varphi \in C_{c}^{\infty}(\mathbb{R})} ||H\varphi||_{L^{p}}
$$

\n
$$
\le C ||f||_{L^{p}} \sup_{\varphi \in C_{c}^{\infty}(\mathbb{R})} ||\varphi||_{L^{p}}
$$

\n
$$
= C ||f||_{L^{p}}.
$$

 \Box

Remark 13. In fact, f is not strong type $(1,1)$ or (∞,∞) . Direct computation *implies*

$$
H\chi_{[0,1]} = \frac{1}{\pi} \log \left| \frac{x}{x-1} \right|,
$$

which belongs to neither L^1 *nor* L^∞ *.*

This theorem implies we can extend the domain of *H* from $C_c^{\infty}(\mathbb{R})$ to L^p for $1 < p < +\infty$ as a result of density of $C_c^{\infty}(\mathbb{R})$.

The proof is so comprehensive that it utilized quite a lot of knowledge instructed in this course, including but not limited to

- 1. definition of strong and weak L^p spaces;
- 2. Chebbyshev's inequality;
- 3. monotonous convergence theorem;
- 4. Fubini's theorem;
- 5. Interpolation theorem;
- 6. Duality of L^p ;
- 7. density of C_c^{∞} ;
- 8. Fourier transform;

9. *· · · · · ·*

3.3 A Couple of General Theories

Due to time limit, we only introduce some important conclusions on boundedness about general singular integral operators, including convolutional and nonconvolutional types.

Definition 3 (Caldéron-Zygmund kernel). *A function* $K(x)$ *defined on* $\mathbb{R}^n \setminus \{0\}$ *is a Caldéron-Zygmund kernel if it satisfies*

- *1.* (size condition) $|K(x)| \leq B|x|^{-n}$;
- *2. (smoothness condition)*

$$
\int_{|x| \ge 2|y|} |K(x - y) - K(x)| \, dx \le B;
$$

3. (cancellation condition)

$$
\int_{a<|x|< b} K(x) \, \mathrm{d}x = 0, \ \forall \, 0 < r < s < +\infty.
$$

Here B is an absolute constant. Then we define the convolutional Caldéron-Zygmund operator

$$
Tf(x) = \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} K(x-y)f(y) \, dy.
$$

Some theories of Fourier transform imply that *T* is weak type (1*,* 1) and strong type (p, p) for $1 < p < +\infty$), but not necessarily strong type $(1, 1)$ or (∞, ∞) .

The prove is a bit more interesting. We can prove T is strong type (p, p) for every $1 \leq p \leq +\infty$, and thus interpolation implies T is strong type (q, q) for $1 < q < p$. Therefore, given a p_0 , we can always pick a larger $p > p_0$ to achieve strong type (p_0, p_0) .

For the endpoints, we can actually introduce the **Hardy space** and **BMO space**, and figure out $T: H^1 \to L^1$ and $T: L^\infty \to BMO$ are bounded.

Definition 4 (Standard kernel). *A function* $K(x, y)$ *defined on*

$$
(\mathbb{R}^n \times \mathbb{R}^n) \backslash \{(x, x) \mid x \in \mathbb{R}^n\}
$$

is a standard kernel if it satisfies

$$
K(x, y) \le \frac{A}{|x - y|^n},
$$

\n
$$
|K(x_1, y) - K(x_2, y)| \le \frac{A|x_1 - x_2|}{(|x_1 - y| + |x_2 - y|^{n+\delta})},
$$

\n
$$
|K(x, y_1) - K(x, y_2)| \le \frac{A|y_1 - y_2|}{(|x - y_1| + |x - y_2|^{n+\delta})},
$$

for some constants $A > 0, \delta > 0$ *. Define the operator associated with the kernel K*(*x, y*) *by*

$$
Tf(x) = \int K(x, y) f(y) \, dy.
$$

Such singular integral operators of nonconvolution type enjoy similar boundedness properties as we states previously, but the proof is much more challenging. The boundedness issue is always a popular topic in modern Fourier analysis, and also necessary in plenty of PDE theories.