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1 Review
1.1 Smooth Functions
Intuitively, the space C∞ is almost the best function space. Additionally, C∞

c seems
better for it exhibits perfect properties in both differentiation and integration.
However, delicacy implies smallness.

As we all know, the pointwise limit of a smooth functions could look terrible.
Even uniform limit maintains nothing but continuity. What is worse, it is impos-
sible to endow a norm structure on C∞, let alone C∞

c . Therefore, we have to go
back to topology to discuss the convergence issue.

Definition 1 (The topology on C∞). Let U be an open set. Define a family of
semi-norms by

Pi,jf = sup
x∈Kj

{|∂αf(x)| | |α| ≤ i},

where {Kj} is a series of compact sets that approximates U from the interior.
Such semi-norms induce something analogous to balls in normed spaces, thus

we obtain a family of topological basis in C∞(U). Conventionally, we denote this
topological space as E(U).

A sequence of functions {φk}∞k=1 ⊂ C∞(U) converges to φ in E(U) if and only
if

lim
k→∞

sup
x∈K

{|∂α(φk(x)− φ(x))| | |α| ≤ i}, ∀α, ∀ compact K ⊂ U.

Remark 1. For example, we can take

Kj =

{
x

∣∣∣∣ infy∈∂U
|x− y| ≥ 1

j

}
∩Bj(0).

In fact, the convolution of a smooth function φ with a family of mollifier
converges to φ itself in E .

The compactness of support is usually damaged by taking limits. To maintain
the properties of C∞

c , more restrictions are necessary.

Definition 2 (The topology on C∞
c ). Let U and {Kj} be the sets defined previously.

Since

C∞
c (U) =

∞⋃
j=1

{φ ∈ C∞(U) | supp φ ⊂ Kj},
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the topology in C∞
c is induced from that of {φ ∈ C∞(U) | supp φ ⊂ Kj}. We

denote this topological space as D(U).
A sequence of functions {φk}∞k=1 ⊂ C∞

c (U) converges to φ in D(U) if and only
if there exists a compact K such that

supp φk ⊂ K, ∀ k ≥ 1,

and

lim
k→∞

sup
x∈K

{|∂α(φk(x)− φ(x))| | |α| ≤ i}, ∀α, ∀ compact K ⊂ U.

Remark 2. In fact, convergence in E implies convergence in D if the supports of
all functions locate in a fixed compact set.

In these two topology, taking derivatives and multiplying a smooth function
are continuous operators.

Remark 3. Since differential operators are continuous on E and D, they cannot
be normed spaces.

1.2 Three Types of Generalized Functions
By definition, one easily notice that

C∞
c (Rn) ⊂ S(Rn) ⊂ C∞(Rn).

The duality properties are rather clear in Lp spaces. It is also necessary to
describe the dual space of these three spaces, namely continuous linear functionals
on them.

Definition 3 (Generalized function). The space of distributions D′, the space
of tempered distribution S ′, and the space of compactly supported distri-
bution E ′ are respectively the dual of D,S, and E .

In fact, we have

E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn).

These three spaces are quite large. Intuitively, it seems difficult to check
whether a functional belongs to them.

Definition 4 (Criteria). We have the following criteria:

1. u ∈ D′ if and only if for any compact K, there exist mK ≥ 0 and CK ≥ 0
such that

|u(φ)| ≤ CK sup
x∈K

|α|≤mK

|∂αu(φ)|, ∀φ ∈ C∞
c such that supp φ ∈ K;
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2. u ∈ S ′ if and only if there exist m ≥ 0 and C ≥ 0 such that

|u(φ)| ≤ C sup
|α|,|β|≤mK

|xα∂βu(φ)|, ∀φ ∈ S;

3. u ∈ D′ if and only if there exists a compact K and two constants m ≥ 0 and
C ≥ 0 such that

|u(φ)| ≤ C sup
x∈K
|α|≤m

|∂αu(φ)|, ∀φ ∈ C∞.

For example the Dirac mass δ is a distribution, which satisfies

δ(φ) = φ(0) =

∫
φ dδ0, ∀φ ∈ C∞.

Theorem 1. Let u ∈ D′ and a ∈ C∞
c , then au is a distribution defined by

(au)(φ) = u(aφ), ∀φ ∈ C∞.

Similar properties could be developed to S ′ and E ′.

1.3 Further Properties
In last chapter, we defined the Fourier transform on S. For u ∈ S ′, we can define
its Fourier transform by duality. In fact, duality allows one to extend an operator
from a good space to a bad one. On some occasions, we use the premodifier “weak”
to distinguish them.

The most essential property of smooth functions is their infinite differentiabil-
ity. It seems that we can transfer derivatives from distributions to smooth func-
tions. To make the boundary term vanish, we conduct this operation on compactly
supported functions.

Definition 5 (Distributional derivatives). For u ∈ D′, define

∂αu(φ) = (−1)|α|u (∂αφ) .

It is easy to check that ∂αu ∈ D′.

Remark 4. In fact, differential operators are continuous on both D and D′.

Derivatives in the sense of distribution are not that practical in the theory of
partial differential equations, for we prefer the solution being functions instead of
distributions. We need something more precise.
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Definition 6 (Weak derivatives). For f ∈ L1
loc(U), we call ∂αf = g in weak sense

if

(−1)|α|
∫
f∂αφ =

∫
gφ, ∀φ ∈ C∞

c (U).

With the help of approximate identities, we can prove that weak derivatives are
unique.

Weak derivative induces weak solution, which is a mark of the beginning of
modern partial differential equation theories.

In the criterion of distributions, we require u(φ) to be bounded by some finite-
order derivatives of φ. Thus, we introduce the concept
Definition 7 (The order of a distribution). A distribution u is of order N if for
any compact K, there exists CK ≥ 0 such that

|u(φ)| ≤ CK sup
x∈K
|α|≤N

|∂αu(φ)|, ∀φ ∈ C∞
c such that supp φ ∈ K.

It is of infinite order if such N does not exist.
Remark 5. Here the order N is independent of K, thus there exist infinite-order
distributions. By definition, however, every compactly supported distribution is of
finite order.

As we know, the multiplication of two smooth functions is not necessarily
integrable. Since a function φ in C∞

c is compactly supported, we do not require
u ∈ D′ to be “compactly supported” to make their product integrable. Conversely,
we conjecture that the dual of C∞, namely E ′ should be compactly supported. To
make sense, we need to figure out the definition of the support of a distribution.
Definition 8 (Support of distributions). For u ∈ D′, we say u = 0 in an open set
Ω if

u(φ) = 0, ∀φ ∈ C∞
c such that supp φ ⊂ Ω.

Then the support of u is defined as ⋃
open Ω⊂U
u=0 in Ω

Ω

c

.

For example, one can verify that supp δ = {0}. More essentially,
Theorem 2 (Structure of E ′). Let D′

c be the collection of compactly supported
distribution, then it is isomorphic to E ′.
Remark 6. This is the reason why we call E ′ compactly supported distributions
initially.
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2 Solutions to Homework
2.1 Exercise 9.1.9
(1)

Proof. For φ ∈ C∞
c ,

⟨δ ◦ Sr, φ⟩ =
∫
Rn

δ(rx)φ(x) dx =

∫
Rn

δ(x)φ
(x
r

)
r−n dx = r−nφ(0) = r−n⟨δ, φ⟩.

(2)

Proof. For φ ∈ C∞
c ,

⟨(∂αF ) ◦ Sr, φ⟩ =
∫
Rn

(∂αF )(rx)φ(x) dx

=

∫
Rn

∂αF (x)φ
(x
r

)
r−n dx

= (−1)|α|
∫
Rn

F (x)∂α
(
φ
(x
r

))
r−n dx

= (−1)|α|
∫
Rn

F (x)(∂αφ)
(x
r

)
r−n−|α| dx

=

∫
Rn

∂αF (x)φ
(x
r

)
r−n−|α| dx

=

∫
Rn

∂α(F (rx))φ
(x
r

)
r−|α| dx

=

∫
Rn

(∂αF )(rx)φ
(x
r

)
rλ−|α| dx

= rλ−|α|⟨∂αF, φ⟩.
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(3)

Proof. For φ ∈ C∞
c ,

⟨(χ(0,+∞) log x)
′ ◦ Sr, φ⟩ =

∫ (
χ(0,+∞) log x

)′
(rx)φ(x) dx

= −
∫
χ(0,+∞) log(rx)φ

′(x) dx

= −
∫
χ(0,+∞)(log r + log x)φ′(x) dx

= −
∫
χ(0,+∞)(log r)φ

′(x) dx−
∫
χ(0,+∞)(log x)φ

′(x) dx

=

∫ (
χ(0,+∞) log x

)′
φ(x) dx−

∫ +∞

0

(log r)φ′(x) dx

= ⟨(χ(0,+∞) log x)
′, φ⟩+ (log r)φ(0).

Therefore, it is a nonhomogeneous distribution.
It is easy to check x−1 is a homogeneous distribution of degree −1 on (0,+∞).

For ψ ∈ C∞
c (0,+∞), we have

⟨(χ(0,+∞) log x)
′ − x−1, ψ⟩ =

∫
(0,+∞)

(χ(0,+∞) log x)
′ψ(x) dx−

∫
(0,+∞)

x−1ψ(x) dx

=

∫
(0,+∞)

(χ(0,+∞) log x)
′ψ(x) dx−

∫
(0,+∞)

x−1ψ(x) dx

=

∫
(0,+∞)

(log x)ψ′(x) dx−
∫
(0,+∞)

ψ(x)

x
dx

= −
∫
(0,+∞)

ψ(x)

x
dx−

∫
(0,+∞)

ψ(x)

x
dx

= 0.

Remark 7. A radical reason for this phenomenon is that

C∞
c (R\{0}) ⊂ C∞

c (R).

More precisely, compactly supported smooth functions on R\{0} must vanish in a
open neighborhood of 0, which eliminates the potential singularity
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2.2 Exercise 9.1.14
(1)

Proof. By direct calculation,

F ε
i (x) =

1

ωn

(
|x|2 + ε2

)−n
2 xi,

F ε
ii(x) =

1

ωn

(
|x|2 + ε2

)−n
2 − n

ωn

(
|x|2 + ε2

)−n
2
−1
x2i ,

which imply

∆F ε(x) =
n∑

i=1

F ε
ii(x) =

nε2

ωn

(
|x|2 + ε2

)−n
2
−1

=
1

εn
g
(x
ε

)
.

(2)

Proof. By direct calculation,∫
g =

n

ωn

∫ (
|x|2 + 1

)−n+2
2 dx = n

∫ +∞

0

rn−1

(r2 + 1)
n+2
2

dr. (1)

Let s = r2

r2+1
, then

r2 =
s

1− s
, 2r dr =

1

(1− s)2
ds.

Change the variable, and∫
g =

n

2

∫ +∞

0

rn−2

(r2 + 1)
n+2
2

dr2 =
n

2

∫ 1

0

s
n−2
2 ds = 1.

(3)

Proof. We only need to prove F ε → F in D′ as ε → 0. In fact, F ε → F almost
everywhere and

|F ε| ≤ F ∈ L1
loc.

By previous exercises, F ε converges to F in distribution.
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(4)

Proof. The condition φ ∈ C∞
c implies

F ∗ ∂αφ ∈ L1

for any multi-index α. As a result,

∆f(x) = ∆x

∫
F (y)φ(x− y) dy

=

∫
F (y)∆xφ(x− y) dy

=

∫
F (y)∆yφ(x− y) dy

=

∫
∆yF (y)φ(x− y) dy

=

∫
δ(y)φ(x− y) dy

= φ(x).

(5)

Proof. we only need to prove (3) for n = 1, 2.
If n = 1, then F (x) = 1

2
|x|, and

⟨∆F, φ⟩ = 1

2

∫
|x|∆φ(x) dx

=
1

2

∫ +∞

0

xφ′′(x) dx− 1

2

∫ 0

−∞
xφ′′(x) dx

= −1

2

∫ +∞

0

φ′(x) dx+
1

2

∫ 0

−∞
φ′(x) dx

= −1

2

∫ +∞

0

φ′(x) dx+
1

2

∫ 0

−∞
φ′(x) dx

= φ(0)

for φ ∈ C∞
c (R). Therefore, we obtain ∆F = δ.

If n = 2, we can similarly prove (1) and (2), thus (3) is still correct.

Remark 8. This is actually the construction of Green’s Function on a ball.
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2.3 Exercise 9.2.27
(1)

Proof. Abstract

hα(x) =
Γ(α

2
)

π
α
2

|x|−α,

which belongs to L1 + L2 when n
2
< α < n. Therefore, ĥα is well defined. By the

definition of Gamma function, we have∫
hα(x)e

−π|x|2 dx =
Γ(α

2
)|Sn−1|
π

α
2

∫ +∞

0

rn−α−1e−πr2 dr

=
Γ(α

2
)|Sn−1|
π

n
2

∫ +∞

0

t
n−α−2

2 e−t dt

=
|Sn−1|
π

n
2

Γ
(α
2

)
Γ

(
n− α

2

)
=

∫
hn−α(x)e

−π|x|2 dx.

For
α ∈ {z ∈ C | 0 < Re < n},

it is easy to verify
Γ(α

2
)

π
α
2

∫
|x|−αe−π|x|2 dx

and
Γ(n−α

2
)

π
n−α
2

∫
|x|α−ne−π|x|2 dx

are holomorphic functions with respect to α that coincide on [n
2
, n] ⊂ R. By the

uniqueness theorem, they coincide everywhere in the domain of definition.

(2)

Proof. Let φ be an arbitrary Schwarz function, then

|⟨Rα, φ⟩| ≤

∣∣∣∣∣ Γ(n−α
2
)

2απ
n
2Γ(α

2
)

∣∣∣∣∣
∫

|x|a−n|φ(x)| dx

≤ C∥φ∥∞
∫
[−1,1]

|x|a−n + C

∫
[−1,1]c

1

|x|2n−a
|x|n|φ(x)| dx

≤ C∥φ∥∞ + C∥xnφ∥∞.

10



Therefore, Rα is a tempered distribution. Note that (1) implies

⟨R̂α, φ⟩ = ⟨Rα, φ̂⟩ =
Γ(n−α

2
)

2απ
n
2Γ(α

2
)
⟨|x|α−n, φ̂⟩ = 1

(2π)α
⟨|ξ|−α, φ⟩,

hence

R̂α = (2π|ξ|)−α .

(3)

Proof. Let φ be an arbitrary Schwarz function, then∫
−∆R2φ dx =

∫
(−∆R2)

∧ φ̌ dξ =

∫
4π2|ξ|2R̂2φ̌ dξ =

∫
φ̌ dξ = (φ̌)∧(0) = φ(0).

which implies

∆R2 = −δ.

Remark 9. This exercise implies some more profound result. By Fourier trans-
form and duality, we can define the fractional Laplacian by

(−∆)αf(x) =
(
(4π2|ξ|2)αf̂(ξ)

)∨
(x) = (4π2)α(|ξ|2α)∧ ∗ f

UNFINISHED

2.4 Exercise 9.3.36
Proof. Note that

∥φj∥Hs =

(∫
(1 + |ξ|2)s

∣∣∣∣∫ φ(x− aj)e
−2πixξ dx

∣∣∣∣2 dξ
) 1

2

=

(∫
(1 + |ξ|2)s

∣∣∣∣∫ φ(x)e−2πi(x+aj)ξ dx

∣∣∣∣2 dξ
) 1

2

=

(∫
(1 + |ξ|2)s

∣∣e2πiajξφ̂(ξ)∣∣2 dξ) 1
2

=

(∫
(1 + |ξ|2)s |φ(ξ)|2 dξ

) 1
2

= ∥φ∥Hs < +∞.
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This bound is independent of j.
Assume there is a convergent subsequence. Without loss of generality suppose

{φj}∞j=1 itself converges to φ in Hs. Since φ is compactly supported, there is an
N > 0 such that

supp φj ∩ supp φ = (aj + supp φ) ∩ supp φ = ∅

for any j ≥ N . In that case,

∥φj − φ∥2Hs =

∫
(1 + |ξ|2)s

∣∣(φj − φ̂)∧ (ξ)
∣∣2 dξ

=

∫
(1 + |ξ|2)s |φ̂j(ξ)− φ̂(ξ)|2 dξ

=

∫
(1 + |ξ|2)s|φ̂j(ξ)|2 dξ +

∫
(1 + |ξ|2)s|φ̂(ξ)|2 dξ

= 2∥φ∥2Hs ,

thus

0 = lim
j→∞

∥φj − φ∥Hs = ∥φ∥Hs =⇒ φ = 0,

a contradiction!

Remark 10. The essence of this solution is to separate the supports of φ and φj.
Another approach is to show its convergence of φj in L2(B1(0)) or L2(Bc

1(0))
(depending on the sign of s), and thus there exists a subsequence that converges to
φ almost everywhere. By Riemann-Lebesgue lemma, it converges to 0 pointwise,
which is impossible.

3 Hardy Space and BMO Space
The theory of Hardy and BMO space is complicated and sophisticated. We aim
to present their fine properties thus might omit some boring proofs.

3.1 Hardy space
The theory of Hardy spaces is established by Hardy when researching complex
analysis in the early 1900s. During the development of theories in function spaces,
the manners mathematicians applied to describe Hardy space differ.

In this course, we have learned that some important operators such as Hardy-
Littlewood maximal operator, are of weak type (1, 1). In other words, they might
map an L1 function into a function excluded from L1.
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To make it easier, a natural idea is to construct a “smaller” space. First, we
introduce an essential concept.

Definition 9 (Poisson kernel). The Poisson kernel is the function

P (x) =
Γ(n+1

2
)

π
n+1
2

1

(1 + |x|2)n+1
2

.

One can check that Pε(x) =
1
εn
P (x

ε
) is a family of approximate identity.

Given a tempered distribution u, the convolution Pt∗u is a distribution defined
by

⟨Pt ∗ u, φ⟩ = ⟨φ̃ ∗ u, P̃t⟩

where

φ̃(x) = φ(−x), P̃t(x) = Pt(−x),

since Pt ∈ L1.

Remark 11. The convolution of a generalized function and an appropriate func-
tion is still a generalized function, which is similarly defined. The identity is always
correct when substituting the generalized function with a function in common sense.

Next, we present the concrete definition of Hardy space.

Definition 10 (Hardy space). Define the Poisson maximal operator by

MPf(x) = sup
ε>0

|Pε ∗ f(x)|, f ∈ S ′.

We say that f ∈ Hp if

∥f∥Hp = ∥MPf∥Lp < +∞.

In fact, Hp spaces are not essential when 1 < p < +∞.

Theorem 3 (Equivalence). For an appropriate function f and p ∈ (1,+∞), we
have

∥f∥Lp ≤ ∥f∥Hp ≤ Cn,p∥f∥Lp .
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Proof. Since {Pε}ε>0 is a family of approximate identity, we have

lim
ε→0

∥Pε ∗ f − f∥Lp = 0,

which implies

∥f∥Lp ≤ sup
ε>0

∥Pt ∗ f∥Lp = ∥ sup
ε>0

|Pt ∗ f |∥Lp = ∥f∥Hp .

The converse inequality is a result of the Lp boundedness of the Hardy-Littlewood
maximal operator,

∥f∥Hp = ∥ sup
ε>0

|Pt ∗ f |∥Lp ≤ ∥Mf∥Lp ≤ Cn,p∥f∥Lp .

Remark 12. For p = 1, this argument leads to

∥f∥L1 ≤ ∥f∥H1 ,

which implies H1 is a subspace of L1.

According to this theorem, Hp and Lp are identical when 1 < p < +∞. There-
fore, we usually focus on the case 0 < p ≤ 1.

There is an equivalent description of Hardy space

Theorem 4 (Littlewood-Paley). For p ∈ (0,+∞), the Hp norm is equivalent with∣∣∣∣∣∣
∣∣∣∣∣∣
(∑

j∈Z

|Pjf |2
) 1

2

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp

.

This accounts for the equivalence of Hp and Lp for 1 < p < +∞ as well.

Particularly, there is a special property of H1. It is smaller than L1 and

Theorem 5 (Boundedness). The Hardy-Littlewood maximal operator and Hilbert
transform are (H1, L1) bounded, namely

∥Tf∥L1 ≤ C∥f∥H1 , ∀ f ∈ H1.

The proof is complicated, thus we omit it here.

Theorem 6 (H1 space). Let H be the Hilbert transform, then

∥f∥H1(R) ≤ ∥f∥L1(R) + ∥Hf∥L1(R).
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Remark 13. We can extend this theorem to higher dimensions by substituting
Hilbert transform with Riesz transform, which is an extension of Hilbert trans-
form to higher dimensions.

As an ending of this part, we show that H1 is exactly smaller than L1.
Theorem 7. H1 is a proper subspace of L1.
Proof. Given a function f ∈ H1, previous theorems imply Hf ∈ L1, thus (Hf)∧

is uniformly continuous. Since

(Hf)∧(ξ) = −iπsgn(ξ)f̂(ξ),

the continuity at origin requires that f̂(0) = 0, namely∫
f = 0.

As a result, L1(R)\H1(R) ̸= ∅. The same conclusion is correct for higher dimen-
sions.

3.2 Bounded Mean Oscillation Space
We never worry about Hardy-Littlewood maximal operator in the other endpoint
since it is strong type (∞,∞). However, other operators, such singular integrals,
are not that lucky. For example, it is obvious that χ[0,1] ∈ L∞, but one can verify
that Hf /∈ L∞.

As a result, we need a “larger” space than L∞.
Definition 11 (BMO space). Let Q be a cube in Rn. The average of a function
f on Q is defined as

fQ =
1

|Q|

∫
Q

f.

Then we introduce the mean oscillation
1

|Q|

∫
Q

|f − fQ|.

A function f is of bounded mean oscillation if

∥f∥BMO = sup
Q

1

|Q|

∫
Q

|f − fQ| < +∞.

Note that ∥f∥BMO = 0 if and only if f is constant almost everywhere. There-
fore, we always identify two functions if their difference is constant almost every-
where. In this case, ∥ ·∥BMO is a norm, and the space (BMO, ∥ ·∥BMO) is actually
a Banach space.
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Remark 14. Of course, we can define BMO by balls rather than cubes.

Next, we shall show that BMO is definitely larger.

Theorem 8. L∞ is a proper subset of BMO.

Proof. For f ∈ L∞, we have

∥f∥BMO = sup
Q

1

|Q|

∫
Q

|f − fQ| ≤ sup
Q

1

|Q|

∫
Q

|f |+ sup
Q

1

|Q|

∫
|fQ| ≤ 2∥f∥L∞ .

It is obvious that log |x| /∈ L∞. Next, we shall prove log |x| ∈ BMO. Define a
constant

Cx0,R =

{
log |x0|, |x0| > 2R,

logR, |x0| ≤ 2R.

By direct computations, |x0| > 2R implies

1

BR(x0)

∫
BR(x0)

|f − Cx0,R| =
1

|Sn−1|Rn

∫
BR(x0)

∣∣∣∣log |x|
|x0|

∣∣∣∣
≤ max

{
log

3

2
,− log

1

2

}
< +∞;

while |x0| ≤ 2R implies

1

BR(x0)

∫
BR(x0)

|f − Cx0,R| =
1

|Sn−1|Rn

∫
BR(x0)

∣∣∣∣log |x|
R

∣∣∣∣
≤ 1

|Sn−1|Rn

∫
B3R(0)

∣∣∣∣log |x|
R

∣∣∣∣
≤ 1

|Sn−1|

∫
B3(0)

∣∣∣∣log |
x
|
∣∣∣∣

< +∞.

In summary,

∥ log |x|∥BMO = sup
B

1

|B|

∫
B

|log |x| − (log |x|)B|

≤ sup
B

1

|B|

∫
B

|log |x| − Cx0,R|+ sup
B

1

|B|

∫
B

|(log |x|)B − Cx0,R|

< +∞.
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Recall Calderón-Zygmund singular integral operators in convolution
type, which is strong type (p, p) for 1 < p < +∞.

Theorem 9 (BMO boundedness). The Hilbert transform in (L∞, BMO) bounded,
namely

∥Hf∥BMO ≤ C∥f∥L∞ .

After the following definition, one figures that BMO and L∞ are not entirely
different.

Definition 12 (Sharp function). For f ∈ BMO, define

f ♯(x) = sup
Q∋x

1

Q

∫
Q

|f(y)− fQ| dy.

It satisfies

∥f∥BMO = ∥f∥L∞ .

With its assistance, we can extend some theories from L∞ to BMO.

Theorem 10 (Interpolation inequality). For 1 ≤< p < q < +∞, a function
f ∈ Lp ∩BMO satisfies

∥f∥Lq ≤ C∥f∥
p
q

Lp∥f∥
q−p
q

BMO.

Theorem 11 (Interpolation of operators). For 1 ≤ p0 < +∞, if linear operator
T is strong type (p0, p0) and (L∞, BMO) bounded, then

∥T∥p→p ≤ Cn,p,p0 , ∀ p0 < p < +∞.

3.3 Duality
Theorem 12 (H1 − BMO duality). Let H1 be the Hardy space, then

(H1)∗ = BMO.

Remark 15. Similar to the fact that (L1)∗ = L∞, (L∞)∗ ̸= L1, the inverse propo-
sition is incorrect.

17


