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1 PRELIMINARIES

1.1 Complex Numbers

1.1.1 General form

Definition 1.1 (Complex field)

C = {a+ bi |a, b ∈ R}

Operation

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Definition 1.2

Real part: Re(z) = a

Imaginary part: Im(z) = b

Modulus: |z| =
√
a2 + b2

Conjugate: z̄ = a− bi
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Properties

|z| = zz̄,
1

z
=

z̄

|z|
(z ̸= 0)

Re(z) =
z + z̄

2
, Im(z) =

z − z̄

2i
z + w = z̄ + w̄, zw = z̄w̄

|zw| = |z||w|, | z
w
| = |z|

|w|
(w ̸= 0)

Inequalities

Re(z) ≤ |z|, Im(z) ≤ |z|
|z + w| ≤ |z|+ |w|, |z − w| = ||z| − |w||

1.1.2 Triangular form

Definition 1.3 Let r = |z|, θ = arctan b
a = arg(z), meaning a = r cos θ, b =

r sin θ:
z = r(cos θ +i sin θ)

Therefore, we can define the argument of a complex number:

Arg(z) = {θ + 2kπ|k ∈ Z}

Fixing an interval measuring 2π such as [0, 2π), we ulteriorly define argument
principal value:

arg(z) = θ

Operation Let z1 = r1(cos θ1 +i sin θ2), z1 = r1(cos θ1 +i sin θ2):

z1z2 = r1r2(cos(θ1 + θ2) +i sin(θ1 + θ2))
z1
z2

=
r1
r2

(cos(θ1 − θ2) +i sin(θ1 − θ2))

Properties

|z1z2| = r1r2

Arg(z1 ± z2) = Arg(z1)±Arg(z2)

Theorem 1.1 (De Moivre’s formula)

(r(cos θ +i sin θ))n = rn(cosnθ +i sinnθ)

Theorem 1.2 (Euler’s formula)

eiθ = cos θ +i sin θ
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1.2 Complex Plane

Definition 1.4 (Extended complex plane)

C̄ = C∞ = C ∪ {∞}

Definition 1.5 (General circle) Let A,C ∈ R, B ∈ C, |B|2 − AC > 0,and a
general circle is presented in form of

Azz̄ + B̄z +Bz̄ + C = 0

When A = 0, it is a common circle; when A ̸= 0, it is a line.

Stereographic projection Regarding C as xOy plane, there is a one-to-
one correspondence between C̄ and sphere S2 : x2 + y2 + z2 = 1. Specifically
speaking, N = (0, 0, 1), P and z are collinear.

Given z on C̄,

P = (
z + z̄

|z|2 + 1
,

z − z̄

|z|2 + 1
,
|z|2 − 1

|z|2 + 1
)

Given P = (x1, x2, x3) on S2,

z =
x1 + ix2

1− x3

Distance between two complex number

d(z, w) = |P −Q| = 2|z − w|√
(1 + |z|2)(1 + |w|2)

Such definition guarantees boundedness, and when w → ∞,

d(z, w) =
2√

1 + |z|2

Theorem 1.3 Circles on S2 corresponds to general circles on C̄ through stere-
ographic projection one by one.

1.3 Analytic Properties of Complex Numbers

Definition 1.6 (Limit of complex series) A complex series {zn}∞n=1 con-
verge to w, i.e

lim
n→∞

zn = w

if for every ε > 0, there exists δ > 0 such that for all n

n > N =⇒ |zn − w| < ε
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Theorem 1.4

lim
n→∞

zn = w

⇐⇒ lim
n→∞

|zn − w| = 0

⇐⇒

 lim
n→∞

Re(zn) = Re(w)

lim
n→∞

Im(zn) = Im(w)

Definition 1.7 (Continuity) f(z) is continuous at the point z0 if for every
ε > 0, there exists δ > 0 such that for all z

|z − z0| < δ =⇒ |f(z)− f(z0)| < ε

Definition 1.8 (Derivative) f(x) is derivable at the point z0 if limit

lim
z→z0

f(z)− f(z0)

z − z0

exists, and we denote

f ′(z) = lim
z→z0

f(z)− f(z0)

z − z0

Definition 1.9 (Differentiability) f(x) is differentiable at the point z0 if

f(z0 +∆z)− f(z0) = A(z0)∆z + ρ(∆z)

where

lim
∆z→z0

ρ(∆z)

∆z
= 0

In particular, differentiability is equivalent to derivability in the field of com-
plex variables functions.

Definition 1.10 (Holomorphism) Abstract complex variables function f(z)

• f(z) is holomorphic in the region D if f(z) is everywhere derivable in D,
denoted as f(z) ∈ H(D).

• f(z) is holomorphic at the point z0 if f(z) is derivable in a neighbourhood
of z0.
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2 HOLOMORPHIC FUNCTIONS

2.1 Properties of Holomorphic Functions

Expression A complex variables function f(z) can be uniquely expressed as

f(z) = u(x, y) +i v(x, y)

where z = x+ ∈ y and u, v are real-valued functions.

Definition 2.1 (Real differentiability) For f(z) = u(x, y) + i v(x, y), f(z)
is real differentiable at z0 = x0 +i y0, if u and v are differentiable at (x0, y0).

Theorem 2.1 f(z) is real differentiable at z0 if and only if

f(z0 +∆z)− f(z0) =
∂f

∂z
(z0)∆z +

∂f

∂z̄
(z0)∆z̄ + ρ(|∆z|), lim

∆z→0

ρ(∆z)

∆z
= 0

where
∂

∂z
=

1

2
(
∂

∂x
−i

∂

∂y
)

∂

∂z̄
=

1

2
(
∂

∂x
+i

∂

∂y
)

Cauchy-Riemman equations Noticing

0 =
∂f

∂z̄
=

1

2
(
∂

∂x
+i

∂

∂y
)(u+i v) =

1

2
(
∂u

∂x
− ∂v

∂y
) +

i

2
(
∂v

∂x
+

∂u

∂y
)

we call equations 
∂u

∂x
=

∂v

∂y

∂v

∂x
= −∂u

∂y

Cauchy-Riemman equations.

Theorem 2.2 (Determination of differentiability) f(z) is differentiable at
z0 if and only if f(z) is real differentiable at z0 and satisfies Cauchy-Riemman
equations.

Differential properties Let f, g ∈ H(D):

f ± g ∈ H(D) (f ± g)′ = f ′ ± g′

fg ∈ H(D) (fg)′ = f ′g + fg′

f

g
∈ H(D) (

f

g
)′ =

f ′g − fg′

g2
(g(z) ̸= 0)

Chain rule Let f ∈ H(G), g ∈ H(D), f(G) ∈ D, then ϕ(z) = f(g(z)) ∈ G,
and

ϕ′(z) = g′(f(z))f ′(z)
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2.2 Harmonic Functions

Definition 2.2 (Complex Laplacian operator)

∆f = 4
∂2f

∂z∂z̄

Theorem 2.3
f = u+i v ∈ H(D) =⇒ ∆u = ∆v = 0

Generally speaking, holomorphism implies harmonicity.

Definition 2.3 (Conjugate harmonic functions) Harmonic functions f, g
defined in D are conjugate harmonic functions if they satisfy Cauchy-Riemann
equations.

Existence of conjugate harmonic functions Given a simply connected
region D and a harmonic function u in D, the conjugate harmonic function of
u, v exists, and f = u+i v ∈ H(D).

In fact,

v(x, y) =

∫ (x,y)

(x0,y0)

−∂u

∂y
dx+

∂u

∂x
dy

2.3 Geometric Properties of Derivative

Definition 2.4 (Smoothness of a curve) Let γ : [a, b] → C, t 7→ x(t) +i y(t)

• γ is smooth in [a, b] if γ′(t) exists in [a, b].

• γ is piecewise smooth in [a, b] if ∃ a = t0 < t1 < · · · < tn = b, γ(t) is
smooth in [ti−1, ti].

Definition 2.5 (Tangent of a curve) For curve γ(t), the angle between its
tangent and positive z-axis at z0 is Arg(γ′(z0)).

Definition 2.6 (Conformal mapping) Function f is conformal, if the an-
gle between 2 curves equals that between their images under f .

Theorem 2.4 Conformal functions have following properties:

• f ∈ H(Ω), f ′(z0) ̸= 0 =⇒ f is conformal in the neighberhood of z0.

• f ∈ H(Ω), f ′(z0) = 0 =⇒ f is never conformal at z0.

• f ∈ H(Ω), f is a bijection from Ω to D, f(z) ̸= 0 =⇒ f is conformal in Ω.

• f ∈ H(Ω), f is conformal in Ω =⇒ f ′(z) ̸= 0.

Definition 2.7 (Modulus of derivative) |f ′(z0)| indicates the ratio of scal-
ing of f at z0:

|f ′(z0)| = lim
z→z0

|f(z)− f(z0)

z − z0
| = lim

z→z0

|w − w0|
|z − z0|
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2.4 Primary Complex Variables Functions

2.4.1 Exponential function

Definition 2.8 (Exponential function)

ez = ex(cos y +i sin y)

where z = x+i y.

Properties Exponential function has following properties:

1. |ez| = ex| cos y +i sin y| = ex > 0.

2. ez1+z2 = ez1ez2 .

3. ez = ez+2kπi, k ∈ Z.

4. ez ∈ H(C).

Definition 2.9 (Univalent domain) A function satisfying

z1 ̸= z2 =⇒ f(z1) ̸= f(z2)

is called a univalent function.
Additionally, if f(z) is univalent in region D, D is called a univalent do-

main of f(z).

Univalent domains of exponential function

ez1 = ez2 ⇐⇒ z1 − z2 ̸= 2kπ

Theorem 2.5 Abstract f(z) = ez and zonal region

D = {z|Im(z) ∈ (0, h)}, h < 2π

D is a univalent domain of f(z), and

f : D 7→ Ω (1)

where
Ω = {rei θ|r > 0, 0 < θ < h}

2.4.2 Logarithmic function

Definition 2.10 (Logarithmic function)

Logz = log |z|+i Arg z

It is a multivalue function.
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Single valued branch The k-th single valued branch of Logz is (Logz)k, i.e.

(Logz)k = log |z|+i arg z + 2kπi

Without confusion, it is denoted as log z.

Properties A single valued branch of a logarithmic function has following
properties:

1. Domain of definition: C\{0}.

2. Not continous in (0,+∞) ⊂ C\{0}.

Definition 2.11 (Variation of multivalue function) Abstract F (z) defined
in Ω, z0 ∈ Ω and its initial value f(z0). When z goes to z0 continuously along
curve C ⊂ Ω, f(z) also goes to a well-determined value f(z0). Here we call
define the variation of F (z) along C, and denote

∆CF (z) = f(z)− f(z0)

Definition 2.12 (Single valued domain) Ω is a single valued domain of
F (z), if ∆CF (z) depends on z and z0, rather than the selection of C. Then
F (z) has a single valued branch in Ω.

Theorem 2.6 Ω is a single valued domain of F (z) if and only if

∆CF (z) = 0

for all simple closed curves in Ω.

Definition 2.13 (Branch point) A point z0 is a branch point if it satisfies
following requirements:

1. ∃ r > 0,s.t. Br(z0) ⊂ Ω and F (z) is definable in B̌r(z0).

2. Every point in B̌r(z0) is an ordinary point, i.e. every point has a neigh-
hood, in which F (z) has a single valued branch.

3. An arbitrarily small deleted neighborhood of z0 has a simple closed curve
C surrounding z0, s.t. ∆CF (z) ̸= 0.

2.4.3 Power function

Definition 2.14 (Power function)

f(z) = zα = eα log z, α ∈ C
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Several common cases According to α, power functions are classified into
several cases:

• α = n ∈ N:
f(z) = zn ∈ H(C)

• α = 1
n , n ∈ N:

f(z) = z
1
n = e

1
n log |z|ei

1
nArg(z) = |z| 1

n ei
1
n (arg(z)+2kπ)

• α = a+ bi, a, b ∈ R:

f(z) = e(a+bi)(log |z|+iArg(z)) = ea log |z|−bArg(z)ei(b log |z|+aArg(z))

Classified discussion of value Let α = a+ bi, a, b ∈ R:

• b = 0, a = n:
f(z) = zn

is a single valued function.

• b = 0, a = p
q :

f(z) = z
p
q = e

p
q log |z|ei

p
qArg(z) = |z|

p
q ei

p
q (arg(z)+2kπ)

is a q-valued function.

• b = 0, a ∈ R\Q:
f(z) = |z|aei a(arg(z)+2kπ)

is an infinitely valued function.

• b ̸= 0:
|f(z)| = ea log |z|−bArg(z) = ea log |z|−barg(z)+2kπ

This indicate that f(z) is an infinitely valued function.

Theorem 2.7 (Root of polynomials) Abstract

F (z) = n
√
R(z)

where

R(z) =

m∏
i=1

(z − ai)
ni , ni ∈ Z

Then F (z) has a single valued branch in Ω if and only if every simple closed
curve C:

n

∣∣∣∣∣∣
∑

aj inC

nj

Furthermore, ∞ is a branch point of F (z) if and only if

n

∣∣∣∣∣∣
m∑
j=1

nj
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2.4.4 Triangular function

Definition 2.15 (Triangular function)

cos z =
1

2
(ei θ + e− i θ)

sin z =
1

2i
(ei θ − e− i θ)

2.5 Linear Fractional Transformation

Definition 2.16 (LFT) A linear fractional transformation is shaped like

f(z) =
az + b

cz + d

where a, b, c, d ∈ C and ∣∣∣∣a b
c d

∣∣∣∣ ̸= 0

Definition 2.17 Four simple LFTs:

1. Translation:
f(z) = z + b, b ∈ C

2. Rotation:
f(z) = eiθz, θ ∈ R

3. Scaling:
f(z) = rz, r > 0

4. Inversion:

f(z) =
1

z

Theorem 2.8 (Decomposition) All LFTs are recombined by four simple trans-
forms.

Theorem 2.9 A LFT is a bijection in C.

Theorem 2.10 A LFT is an identity, if it has 3 fixed points.

Theorem 2.11 (Existence and uniqueness) Given different z1, z2, z3 and
different w1, w2, w3, there is a unique LFT s.t.

f(zi) = wi, i = 1, 2, 3

Definition 2.18 (Cross ratio)

(z, z1, z2, z3) =
z − z2
z − z3

z1 − z3
z1 − z2
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Theorem 2.12 A cross ratios is invariant under a LFT.

Theorem 2.13 (Circle remaining) A LFT map a circle into a circle.

Theorem 2.14 z1, z2, z3, z4 are concylic if and only if

Im(z1, z2, z3, z4) = 0

Definition 2.19 (Left and right) if z1, z2, z3 lies on a circle in order, we
naturally define their left hand side and right hand side.

Theorem 2.15 z is on the left hand side of z1, z2, z3 if and only if

Im(z, z1, z2, z3) > 0

z is on the right hand side of z1, z2, z3 if and only if

Im(z, z1, z2, z3) < 0

A following corollary is that:
If z is on the left hand side of z1, z2, z3, then f(z) is on the left hand side of

f(z1), f(z2), f(z3), where f(z) is a LFT. The same is true of ”right hand side”.

Definition 2.20 (Symmetric points) Given a point z1 not on circle C : |z−
a| = R, z2 is the symmetric point of z1 if

|z1 − a||z2 − a| = R2

In other words,

z2 = a+
R2

z̄ − ā

That’s to say, reiθ and R2

r eiθ are symmetric points.

Theorem 2.16 (Determination of symmetric points) z1 and z2 are sym-
metric about

A|z|2 +Bz̄ + B̄z + C = 0

if
Az1z2 +Bz̄1 + B̄z2 + C = 0

Theorem 2.17 Abstract circles C1, C2, and

f : C1 7→ C2

A LFT maps symmetric points about C1 into symmetric points about C2.
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Transform of regions Functions we mentioned above transform some special
regions into other special regions.

• f(z) = az+b
cz+d : straight line/circle −→ straight line/circle.

• f(z) = ez: zonal region −→ angular region.

• f(z) = Log(z): angular region −→ zonal region .

• f(z) = zn: θ −→ nθ.

• f(z) = z
1
n : θ −→ 1

nθ.

• f(z) = 1
2 (z +

1
z ): a recombination of z2 and 1+z

1−z .

Univalent domains of cosine function

cos z1 = cos z2 ⇐⇒ z1 + z2 ̸= 2kπ, z1 − z2 ̸= 2kπ

3 COMPLEX INTEGRAL

3.1 Cauchy Integral Formula

Definition 3.1 (Rectifiable curve) Curve γ, rectifiable, if is length

L(γ) = sup
||π||

∑
k

|γ(tk)− γ(tk−1)| < ∞

Definition 3.2 (Complex integral) Let f(t) = x(t) + i y(t) be a complex-
valued continuous function in [a, b], we define:∫ b

a

f(t) dt =

∫ b

a

x(t) dt+i

∫ b

a

y(t) dt

Operation of complex integral Let f(t) = x(t)+i y(t) be a complex-valued
continuous function in [a, b], c ∈ C:

Re(

∫ b

a

f(t) dt) =

∫ b

a

x(t) dt

Im(

∫ b

a

f(t) dt) =

∫ b

a

y(t) dt

c

∫ b

a

f(t) dt =

∫ b

a

cf(t) dt
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Absolute value inequality

|
∫ b

a

f(t) dt| ≤
∫ b

a

|f(t)| dt

Definition 3.3 (Curvilinear integral) Let γ : [a, b] −→ C be smooth, f(z)
be a continuous conplex-valued function, and we define:∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt

As for a piecewise smooth curve, we similarly define:∫
γ

f(z) dz =
∑
k

∫ tk−1

tk

f(γ(t))γ′(t) dt

As for a rectifiable curve, the definition returns to a Riemann sum:∫
γ

f(z) dz = lim
||π||→0

∑
k

f(zk)|zk − zk−1|

Theorem 3.1 (Estimation lemma)

|
∫
γ

f(z) dz| ≤ ML(γ)

where
M = sup

z∈γ
|f(z)|

Respective integral Let f = u+i v, γ = x+i y:∫
γ

f(z) dz =

∫ b

a

(u(γ) +i v(γ))(x′ +i y′) dt

=

∫ b

a

(ux′ − vy′ +i(vx′ + uy′)) dt

=

∫ b

a

(u dx− v dy +i(v dx+ u dy))

=

∫ b

a

(u+i v)( dx+i dy))

Theorem 3.2 (Green’s formula) Let Ω be a simply connected region, P,Q ∈
C1(Ω): ∫

∂Ω

P dx+Q dy =

∫
Ω

(
∂Q

∂x
− ∂P

∂y
) dx dy
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Theorem 3.3 (Cauchy integral theorem) Abstract a simply connected re-
gion Ω, f(z) ∈ H(Ω). For each rectifiable closed curve γ ⊂ Ω,∫

γ

f(z) dz = 0

Additionally, if f(z) is continuous in Ω̄, we deduce∫
∂Ω

f(z) dz = 0

Theorem 3.4 (Cauchy integral theorem in multiple connected regions)
Abstract a region D surrounded by n+1 simple closed curves γ0, γ1, · · · , γn and
define ∂D = γ+

0 ∪ γ−
1 ∪ · · · ∪ γ−

n ,

f ∈ H(D) ∩ C(D̄) =⇒
∫
∂D

f(z) dz =

∫
γ0

f(z) dz −
n∑

k=1

∫
γk

f(z) dz = 0

3.2 Complex Fundamental Theorem of Calculus

Definition 3.4 (Primitive) Given f(z), if F (z) ∈ H(Ω) and F ′(z) = f(z),
we call F (z) the primitive of f(z).

Theorem 3.5 (Complex Newton-Leibniz formula) Let γ : [a, b] −→ C be
piecewise smooth. If f(z) has a primitive F (z),∫

γ

f(z) dz = F (γ(b))− F (γ(a))

An immediate corollary is that:
Given a f(z) defined above and a closed curve γ,∫

γ

f(z) dz = 0 (2)

Meanwhile, if ∃ a closed curve γ0 s.t.∫
γ

f(z) dz ̸= 0

f(z) has no primitive.

Derivative of constant function

f(z) ∈ H(Ω), f ′(z) = 0 =⇒ f(z) = Const

Deriving a primitive Let Ω be a simply connected region, z0 ∈ Ω, f(z) ∈
H(Ω),

F (z) =

∫ z

z0

f(w) dw ∈ H(Ω), F ′(z) = f(z)
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Existence of primitives in multiple connected region Let f(z) ∈ H(Ω)∩
C(Ω̄), then f(z) has a primitive in Ω if and only if∫

γk

f(z) dz = 0, ∀k = 1, 2, · · · , n

Single valued branch of a primitive Let Ωj ⊂ Ω are simply connected
regions s.t. ∫

∂Ωj

f(z) dz ̸= 0

then all single valued branch of F (z) are

F0(z) +
n∑

j=1

nj

∫
∂Ωj

f(z) dz, nj ∈ Z

3.3 Cauchy Integral Formula

Theorem 3.6 (Cauchy integral formula) Let f(z) ∈ H(Ω) ∩ C(Ω̄), γ be a
simple closed curve:

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw

Namely, internal values are determined by boundary values.

Theorem 3.7 (Cauchy integral formula) Let curve γ ⊂ Ω, ϕ(z) ∈ C(γ), F (z) =
1

2πi

∫
γ

ϕ(w)
w−z dw, we have:

• F (z) ∈ H(Ω\γ).

• F (n)(z) exists, and

F (n)(z) =
n!

2πi

∫
γ

ϕ(w)

(w − z)n+1
dw.

This theorem provides a method of integrating:∫
γ

f(w)

(w − z)m
dw =

2πi

(m− 1)!
f (m−1)(z)

Theorem 3.8 (Cauchy’s inequality) For bounded function f(z) ∈ H(BR(a)),

|f (n)(a)| ≤ n!

Rn
M

where M is a upper bound of |f(z)| in BR(a), and n is an integer.

Definition 3.5 (Entire function) A holomorphic function in the entire com-
plex plane is called a entire function.
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Theorem 3.9 (Liouville theorem) Bounded entire functions are constants.

Theorem 3.10 (Fundamental theorem of algebra) A polynomial function
with complex coefficients has at least one complex root in complex field.

Theorem 3.11 (Morera theorem) Abstract f(z) ∈ C(Ω),∫
γ

f(z) dz = 0,∀γ ⊂ Ω =⇒ f(z) ∈ H(Ω)

Definition 3.6 (Boundless region surrounded by curves) As for simple
closed curves γ1, γ2, · · · , γn, their joint exterior D is called the boundless region
surrounded by γ1, γ2, · · · , γn, and its boundary is ∂D = γ−

1 ∪ γ−
2 ∪ · · · ∪ γ−

n .

Theorem 3.12 (Cauchy theorem in boundless region) Abstract boundless
region D surrounded by curve γ, f(z) ∈ H(D) ∩ C(D̄) s.t.

lim
z→∞

z2f(z) = a ∈ C

we have ∫
γ

f(z) dz = 0

Theorem 3.13 (Cauchy’s formula in boundless region) Abstract bound-
less region Ω surrounded by curve γ and f(z) ∈ H(Ω) ∩ C(Ω̄), f(∞) ∈ C, then

f(z) = f(∞) +
1

2πi

∫
γ

f(w)

w − z
dw

f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw

Theorem 3.14 (A variant of Cauchy’s inequality) Abstract f(z) ∈ H(BR(a)),
we have

|f ′(a)| ≤ 2M

R

where |Re(f(z))| ≤ M .

4 COMPLEX SERIES

4.1 Convergence of Complex Series

Definition 4.1 (Convergence of complex series) Abstract complex series
{zn}, let

Sn =

n∑
k=1

zk

The series
∑∞

n=1 zn is convergent if

Sn → S, n → ∞

16



Equivalently,
∑∞

n=1 zn is convergent if and only if the following two real
series

∞∑
n=1

Re(zn)

∞∑
n=1

Im(zn)

are convergent.

Theorem 4.1 (Cauchy’s criterion of convergence)
∑∞

n=1 zn is convergent
if and only if for every ε > 0, there exists a N > 0 such that

n2 > n1 > N =⇒ |zn1+1 + · · ·+ zn2 | < ε

Definition 4.2 (Convergence of complex series of functions) Abstract com-
plex series of functions {fn(z)}, the series

∑∞
n=1 fn(z) is convergent if for all z

in E,
∑∞

n=1 fn(z) is convergent.

Additionally, The sum function of the series is define as

S(z) =

∞∑
n=1

fn(z)

Definition 4.3 (Uniform convergence) Sn(z) uniformly converge to S(z) if
for every ε > 0, there exists a N > 0 such that for all z in E,

n > N =⇒ |Sn(z)− S(z)| < ε

While Cauchy’s criterion of convergence and Weierstrass test holds for
uniform convergence.

Definition 4.4 (Internally closed uniform convergence)
∑∞

n=1 fn(z) is In-
ternally closed uniformly convergent if it is uniformly convergent in each com-
pact set in E.

4.2 Power Series

Definition 4.5 (Convergence radius) For power series
∑∞

n=0 anz
n, its con-

vergence radius is

R =
1

lim
n→∞

n
√

|an|

The convergence radius shows that

|z| < R =⇒
∞∑

n=0

anz
n < +∞

|z| > R =⇒
∞∑

n=0

anz
n = +∞

17



Theorem 4.2 (Holomorphism of power series) Abstract a function in form
of power series

f(z) =

∞∑
n=0

anz
n

whose convergence radius is R. Then

1. f(z) ∈ H(BR(0))

2. f ′(z) =
∑∞

n=1 nanz
n−1

3. f ′(z) is convergent and holomorphic in BR(0)

Additionally, we deduce that power series is infinitely derivable in its conver-
gence domain.

Definition 4.6 (Analyticity) f(z) is analytic at z0 if it can expand into
power series at z0, and it is analytic in D if it is analytic at every point in D.

Theorem 4.3 (Abel theorem) Abstract

f(z) =

∞∑
n=0

anz
n

whose convergence radius is R = 1. If it converge to S at z = 1, f(z) is
uniformly convergent in Ā and

lim
|z|<1
z→1

f(z) = S

where

A = {z |π − θ0 < arg(z − 1) < π + θ0} ∩B1(0), θ0 ∈ (0,
π

2
)

is an angular region.

Theorem 4.4 If series
∞∑

n=1

an
nz

is convergent at z0 = x0 +i y0, then

1. It converges in {z |Re(z) > x0}

2. It uniformly converges in Ā, where A = {z | θ0 < arg(z − z0) < θ0}

3. There exists a convergence line Re(z) = C, it converge when Re(z) > C
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Definition 4.7 (Riemann’s zeta function) The convergence line of series

∞∑
n=1

1

nz

is Re(z) = 1. It can be extended to C\{1}, called Riemann’s zeta function.

Theorem 4.5 (Termwise integration) If fn(z) is continuous in curve γ and

∞∑
n=1

fn(z) ⇒ f(z)

then we have ∫
γ

f(z) dz =

∞∑
n=1

∫
γ

fn(z) dz

Theorem 4.6 (Uniform convergence of higher order derivatives) For fn(z) ∈
H(Ω), if

∞∑
n=1

fn(z)

internally closed uniformly converge to f(z)

1. f(z) ∈ H(z)

2.
∑∞

n=1 f
(m)
n (z) internally closed uniformly converge to f (m)(z)

Theorem 4.7 (Holomorphism of multivariate function) If

F (z, s) : Ω× [0, 1] −→ C

satisfying

1. ∀ s ∈ [0, 1], F (z, s) is a holomorphic function of z

2. F (z, s) ∈ C(Ω× [0, 1])

the function

f(z) =

∫ 1

0

F (z, s) ds

is holomorphic in Ω.
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4.3 Taylor Expansion of Holomorphic Functions

Theorem 4.8 (Taylor expansion) Let f(z) ∈ H(Ω), B̄r(z0) ⊂ Ω, then f(z)
can uniquely expand into a power series

f(z) =

n∑
n=0

an(z − z0)
n

where

an =
1

n!
f (n)(z0), z = Br(z0)

This theorem implies that holomorphism is equivalent to analyticity.

Theorem 4.9 (Multiplicity of zero) For f(z) ∈ H(z0), f(z0) = 0, we have
following results:

f (n)(z0) = 0,∀n =⇒ a0 = a1 = · · · = 0 =⇒ f(z) = 0,∀ z ∈ Bδ(z0)

f (n)(z0) = 0,∀n ≤ m, f (m)(z0) ̸= 0 =⇒ f(z) = am(z − z0)
m(1 +

am+1

am
z + · · · )

In the second situation, z0 is a zero of multiplicity m.

Theorem 4.10 (Isolatism of zeros) The set of zeros of a holomorphic, i.e.
for f(z) ∈ H(Ω)

∃ {zn}∞n=1 ⊂ Ω, zn → z0 ∈ Ω, f(zn) = 0,∀n =⇒ f(z) = 0,∀z ∈ Ω

Theorem 4.11 (Uniqueness theorem) For f1(z), f2(z) ∈ H(Ω), if

∃ {zn} ⊂ Ω, zn → z0, zn ̸= z0, f1(zn) = f2(zn)

then f1(z) = f2(z) in Ω.

4.4 Laurent Expansion

4.4.1 Laurent series

Definition 4.8 (Laurent series)

+∞∑
n=−∞

an(z − z0)
n =

+∞∑
n=0

an(z − z0)
n +

−1∑
n=−∞

an(z − z0)
n (3)

The part similar to Taylor series is its holomorphic part, while the other part
is its main part. The series is convergent if and only if the two parts above
are convergent.
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Convergence domain Suppose the convergence radius of the holomorphic
part is R, and let w = 1

z−z0
, then the main part

−1∑
n=−∞

an(z − z0)
n =

+∞∑
n=1

anw
n

Suppose the convergence radius of the series of w is ρ, then the convergence
domain of series (3) is an annulus

{z | 1
ρ
< |z − z0| < R}

Theorem 4.12 (Laurent expansion) Abstract a holomorphic function f(z)
in annulus {z | r < |z − z0| < R}, it can expand into a unique Laurent series in
form of (3), where

an =
1

2πi

∫
|z−z0|=ρ

f(w)

(w − z0)n+1
dw

and r < ρ < R.

4.4.2 Isolated singularity

Classification If f(z) ∈ H(B̌r(z0)) has no definition at point z0, we call z0
an isolated singularity of f(z). Moreover, we can classify them into three
type by the Laurent expansion of f(z):

1. Removable singularity: No negative power term

2. Pole: Finite negative power terms

3. Essential singularity: Infinite negative power terms

Removable singularity Following propositions are equivalent:

1. z0 is a removable singularity of f(z)

2. f(z) is bounded in a deleted neighborhood of z0

3. The Laurent expansion of f(z) at z0 has no negative power term

4. The limit
lim
z→z0

f(z)

exists and is finite
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Pole Following propositions are equivalent:

1. z0 is a pole of f(z)

2. lim
z→z0

f(z) = ∞

3. ∃m > 0, s.t. g(z) = (z − z0)
mf(z) is a holomorphic function in Bδ(z0)

and has no zero in Bδ(z0)

4. The Laurent expansion of f(z) at z0 has finite negative power terms

5. ∃m > 0, s.t. the limit
lim
z→z0

(z − z0)
mf(z)

exists and isn’t 0.

6. ∃m > 0, s.t. z0 is an mth-order zero of g(z) = 1
f(z)

Here m is called the order of pole z0.

Essential singularity Following propositions are equivalent:

1. z0 is an essential singularity of f(z)

2. limz→z0 doesn’t exist

3. The Laurent expansion of f(z) at z0 has infinite negative power terms

4. ∀A ∈ C̄,∃ {zn} ⊂ B̌δ(z0), s.t.

lim
n→∞

f(zn) = A

Infinite isolated singularity If f(z) is a holomorphic function in {z | |z| >
R}, ∞ is an isolated singularity of f(z). And if z = ∞ is an isolated singularity
of f(z), the type of z = ∞ of f(z) is identical to that of z = 0 of f( 1z ). For
example,

• ∞ isn’t an isolated singularity of

f(z) =
1

sin z

• ∞ is an nth-order pole of

f(z) =

n∑
k=0

akz
k

where an ̸= 0
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4.5 Meromorphic Function

Definition 4.9 (Entire function) A holomorphic function in C is an entire
function.

Infinite isolated singularity of entire functions z = ∞ is an isolated
singularity of an entire function f(z), and

• z = ∞ is a removable singularity of f(z) ⇐⇒ if f(z) = Const

• z = ∞ is a pole of f(z) ⇐⇒ if f(z) is a polynomial

• z = ∞ is an essential singularity of f(z) if and only if

f(z) =

∞∑
n=0

anz
n, lim

n→∞
|an| > 0

Definition 4.10 (Meromorphism) f(z) is meromorphic in region D ∈ C, if
f(z) is holomorphic in every point in D except its poles.

Theorem 4.13 (Rational function) Every meromorphic function can be pre-
sented in form of rational function, i.e.

f(z) =
P (z)

Q(z)

where P (z) and Q(z) are two polynomials.

Theorem 4.14 A meromorphic bijection in C is an LFT.

Theorem 4.15 If the inverse function of an entire function f(z) exists and is
entire, we have

f(z) = az + b

5 ESTIMATION OF FUNCTIONS

5.1 Maximum Modulus Principle

Theorem 5.1 (Maximum modulus principle) If f(z) ∈ H(D) is noncon-
stant, |f(z)| doesn’t reach it maximum in D.

Another expression of this theorem is

Theorem 5.2 For f(z) ∈ H(D) ∩ C(D̄), ∀ z ∈ D,

|f(z)| ≤ max
w∈∂D

|f(w)|
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Theorem 5.3 (Extremum principle of harmonic functions) If u(x, y) is
a harmonic and nonconstant function in region D, u(x, y) dosen’t reach its
maximum and minimum in D.

Abstracting g(z) = 1
f(z) , we can deduce a useful proposition:

Theorem 5.4 (Minimum principle) If f(z) ∈ H(D) is nonconstant and
f(z) ̸= 0,∀ z ∈ D, then f(z) doesn’t reach it minimum in D.

5.2 Schwartz’s Lemma

Theorem 5.5 (Schwartz’s lemma) Abstract holomorphic function in unit disc
D = {z | |z| < 1}:

f : D −→ D

and f(0) = 0, we can deduce following conclusions:

1. |f(z)| ≤ |z|,∀ z ∈ D

2. If |f(z0)| = |z0|, z0 ̸= 0, then f(z) is a rotation, i.e ∃ θ0 ∈ R, s.t

f(z) = eiθ0z

3. |f ′(0)| ≤ 1, and the equility holds if and only if f(z) is a rotation

Definition 5.1 (Conformal equivalence) Abstract holomotphic bijection

f : U −→ V

It is a conformal mapping, then U and V are conformal equivalent or biholo-
morphic equivalent.

Definition 5.2 (Holomorphic automorphism) A conformal function

f : U −→ U

is called a holomorphic automorphism of U .

All holomorphic automorphism of U compose a group Aut(U).

Theorem 5.6 (Particular holomorphic automorphisms)

Aut(C) = {az + b | a ̸= 0, b ∈ C}

Aut(C̄) = {az + b

cz + d
| ad− bc ̸= 0}

Aut(D) = {eiθ z − α

1− ᾱz
| θ ∈ R, |α| < 1}
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5.3 Argument Principle

Definition 5.3 (Argument Principle) Let N(f, γ) be the total orders of the
zeros of f(z) in simple closed curve γ, P (f, γ) be that of poles, then

N(f, γ)− P (f, γ) =
1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
γ

df(z)

f(z)

=
1

2πi

∫
σ

dw

w
=

1

2π
∆σArg(w) =

1

2π
∆γArg(z)

Theorem 5.7 (Rouché’s theorem) If f(z), g(z) ∈ H(D), γ ⊂ D satisfy

|g(z)| < |f(z)|, ∀ z ∈ γ

the number of zeros of f(z) and f(z) ̸= g(z) is the same in the region surrounded
by γ.

Definition 5.4 (Open mapping) A open mapping maps an open set into an
open set, i.e.

f(Bδ(z0)) ⊃ Bρ(w0)

Specifically, holomorphic functions are open mappings.

Theorem 5.8 Abstract a nonconstant function f(z) ∈ H(Ω), f(0) = 0. For a
sufficiently small ρ > 0,∃ > δ > 0, when 0 < |w0| < δ, f(z)− w0 has a zero in
Bρ(0). Additionally, if 0 is an mth-order zero, the result above is improved into
f(z)− w0 has m zeros in Bρ(0).

Theorem 5.9 For nonconstant f(z) ∈ H(Ω), f(z0) = w0 and sufficiently small
ρ > 0, ∃ δ > 0, s.t.

Bδ(w0) ⊂ Bρ(z0)

Theorem 5.10 A nonconstant holomorphic function maps regions into regions.

Theorem 5.11 (Differential property of univalent functions) For a uni-
valent function f(z) in Ω,

f ′(z) ̸= 0,∀ z ∈ Ω

Inversely, if f(z0) ̸= 0,∃ ε0 > 0, s.t. f(z) is univalent in Bε0(z0).

Theorem 5.12 (Inverse function of univalent functions) The inverse func-
tion of a univalent holomorphic function is a univalent holomorphic function.

5.4 Residue Theorem

Definition 5.5 (Residue) For f ∈ H(B̌r(a)), we define its residue at a:

Res(f, a) =
1

2πi

∫
|z−a|=ρ

f(z) dz

where ρ ∈ (0, r).
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In particular, if the Laurent expansion of f at a is

f(z) =

+∞∑
n=−∞

= cn(z − a)n

then Res(f, a) = c−1.

Residue around singularity The value of a residue around a sigularity a
relies on the type of the singularity.

1. Removable singularity: Res(f, a) = 0

2. First-order Pole: Res(f, a) = c−1

3. mth-order singularity: Res(f, a) = ((z−a)mf(z))(m−1)

(m−1)! |z=a

Theorem 5.13 (Residue theorem) For f ∈ H(D\{z1, · · · , zn})∩C(D̄\{z1, · · · , zn}),
we have ∫

∂D

f(z) dz = 2πi

n∑
k=1

Res(f, zk)

Definition 5.6 (Infinite residue) For f ∈ H(C\BR(0)), we define

Res(f,∞) = −2πi

∫
|z|=ρ

f(z) dz

where ρ > R.

Theorem 5.14 (Infinity residue theorem) For f ∈ H(D\{z1, · · · , zn}), the
sum of residues of f around all its isolated singularity is 0, i.e.

Res(f,∞) +

n∑
k=1

Res(f, zk) = 0

6 HOLOMORPHIC EXTENSION

6.1 Schwartz’s Principle of Symmetry

Definition 6.1 (Holomorphic extension) For region D and f ∈ H(D), if
there exists a region G ⊃ D and F ∈ H(G), s.t.

F (z)|D = f(z)

then F is called the holomorphic extension of f in G.

Theorem 6.1 (Painlevé’s theorem) If region Ω is divided into two regions
Ω1,Ω2 by curve γ, then

f ∈ H(Ω1 ∪ Ω2) ∩ C(Ω) =⇒ f ∈ H(Ω)
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This theorem implies a critical corollary,

f1(z) ∈ H(Ω1) ∩ C(Ω1 ∩ γ)

f1|γ = f2|γ

}
=⇒ F (z) ∈ H(Ω)

where Ω = Ω1 ∪ Ω2 ∪ γ, and

F (z) =

{
f1(z), z ∈ Ω1 ∪ γ

f2(z), z ∈ Ω2

(4)

Theorem 6.2 (Schwarz’s symmetry theorem) Let D be symmetric about
real axis, f satisfies

1. f is holomorphic in D ∩ {z ∈ C|Im(z) > 0}

2. f is continuous in D ∩ {z ∈ C|Im(z) ≥ 0}

3. f is real-valued in D ∩ {z ∈ C|Im(z) = 0}

then

F (z) =

{
f(z), z ∈ D ∩ {z ∈ C|Im(z) ≥ 0}
f(z̄), z ∈ D ∩ {z ∈ C|Im(z) < 0}

(5)

is the holomorphic extension of f in D.

We can promote the ”axis of symmetry” of the theorem from real axis into
arbitrary general circles.

Theorem 6.3 Suppose

1. Ω and Ω′ are symmetric about circle S = {z||z| = r}

2. f(z) is holomorphic in Ω

3. f(S) is an arc Γ

4. The center of Γ, b /∈ f(Ω)

then f(z) can be holomorphically extended into Ω ∪ S ∪ Ω′.

6.2 Holomorphic Extension of Power Series

Definition 6.2 (Regular point and singular point) Abstract a power se-
ries

f(z) =

∞∑
n=0

cnz
n

with a convergence radius R. It is holomorphic in D = {z||z| < R}
z0 is a regular point of f(z), if for z0 ∈ ∂D,there exists a neighborhood

Bδ(z0) and holomorphic function g(z) in it, s.t

f(z) = g(z), ∀z ∈ D ∩Bδ(z0)

z0 is a singular point of f(z), if z0 ∈ ∂D is not a regular point.
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If f ∈ H(D1), g ∈ H(D2), D1 ∩D2 ̸= ∅, and fD1∩D2 = gD1∩D2 , we denote

(f,D1) ∼ (g,D2)

Theorem 6.4 (Existence of singular point) There is at least 1 singular point
on the convergence circle of a power series.

Theorem 6.5 (Determine type of points) To identify the regular and sin-
gular points of power series of f(z), we have following theorems.

1. if lim
z→z0

|f(z)| = +∞, z0 is a singular point

2. f(z) and f ′(z) have identical regular and singular points on |z| = R

3. There is no necessary connection between regular/singular points and con-
vergent/diverging points

There are 4 typical examples for item 3.

convergent point diverging point

regular point z = 1 of
∞∑

n=0
(−1)n−1 zn

n z = −1 of
∞∑

n=0
zn

singular point z = 1 of
∞∑

n=0

zn

n(n−1) z = 1 of
∞∑

n=0
zn

Theorem 6.6 Under the condition of

lim
z→z0

|f(z)| ≠ ∞

we pick a point z′0 on the segment between O and z0 and suppose that ρ is the
convergence radius of

f(z) =

∞∑
n=0

f (n)(z′0)

n!
(z − z′0)

n

Apparently, ρ ≥ R − |z′0|. Moreover, z0 is a regular point if ρ > R − |z′0|, z0 is
a singular point if ρ = R− |z′0|.

7 RIEMANN CONFORMAL MAPPING

7.1 Regular Family

Theorem 7.1 (Hurwitz’s theorem) If

1. fn(z) ∈ H(D) internally closed uniformly converge to f(z), f(z) is nonzero

2. Closed curve γ doesn’t pass zeros of f(z)

there exists N , s.t. fn(z) has as many zeros as f(z) in γ when n > N .
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Theorem 7.2 If

1. fn(z) ∈ H(D) is univalent

2. fn(z) internally closed uniformly converge to f(z), f(z) is nonconstant

then f(z) is univalent and holomorphic in D.

Definition 7.1 (Internally closed uniform boundedness) A family of func-
tions F in Ω, is internally closed uniformly bounded, if ∀K ⊂ Ω, ∃M(K) > 0,
s.t. |f(z)| ≤ M(K),∀ f ∈ F , where K is compact.

Definition 7.2 (Internally closed equicontinuity) A family of functions F
in Ω, is equicontinuous, if ∀K ⊂ Ω,∀ ε > 0, ∃ δ(ε,K) > 0, s.t. |f(z1)−f(z2)| <
ε, ∀ f ∈ F as long as |z1 − z2| < δ where K is compact.

Theorem 7.3 (Arzela-Ascoli lemma) For compact set K ⊂ C, if {fn} is
uniformly bounded and equicontinuous in K, there exists a subsequence of {fn}
which uniformly converges to continuous function f .

Theorem 7.4 (Montel’s theorem) A family of internally closed uniformly
bounded holomorphic functions F in D has a subsequence which internally closed
uniformly converges in D.

Definition 7.3 (Regular family) A family of functions is call a regular fam-
ily if an arbitrary sequence of function in the family has an internally closed
uniformly convergent subsequence.

7.2 Riemann Mapping Theorem

Theorem 7.5 (Riemann mapping theorem) A simply connected region Ω ⊂
C is holomorphically isomorphic to D

Theorem 7.6 (Reinforced Riemann mapping theorem) For a simply con-
nected region Ω ⊂ C, there exists a unique holomorphic bijection F : Ω −→ D,
s.t F (z0) = 0, F ′(z0) > 0

For a simply connected U and f ∈ H(U), f(U) is not necessarily simply
connected. A counter-example is

f : H −→ D\{0}, z 7→ e2πi z (6)

7.3 Boundary Correspondence

Theorem 7.7 (Theorem of boundary correspondence) Abstract conformal
function F : D −→ P , P is an open polygon, we have

1. F can be continuously extended into a bijection from D to P

2. F is a bijection from ∂D to ∂P
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Two counter-example of last theorem are

1. For Ω = ((0, 1) × (0, 1))\(
⋃∞

n=2
1
n ×

(
0, 1

2

]
), there is no continuous curve

connecting z ∈ Ω and (0, 1
4 )

2. For D\{x|0 ≤ x < 1} and different n, there is no continuous curve con-
necting zn = ( 12 , (−1)n 1

n )

Theorem 7.8 Abstract a simple closed curve γ ⊂ D, the region surrounded by
γ is D1. If f ∈ H(D) map γ into a simple closed curve Γ univalently, then
f is univalent in D1, and maps D1 into the region surrounded by Γ, positive
direction of γ into that of Γ.

7.4 Conformal Mapping of Polygons

Theorem 7.9 f(z) = zα, 0 < α < 2 maps H into an angular region and can be
continuously extended to the boundary.

Theorem 7.10 A single valued branch of function f(z) =
∫ z

0
dξ√
1−ξ2

maps H

into {z|π2 < Re(z) < π
2 , Im(z) > 0}

Theorem 7.11 Let P be a polygon. F is a conformal function from H to P if
and only if F has the form

F (z) = c1

∫ z

0

dξ

(ξ −A1)β1 · · · (ξ −An)βn
+ c2

8 FOURIER TRANSFORM

9 ENTIRE FUNCTIONS

10 GAMMA AND ZETA FUNCTION
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