Notes of Complex Analysis (H)

Yu Junao

October 13, 2023

Abstract

Semester: 2023 Spring Teacher: Prof. Li Haozhao Classroom: 5207 Time: 2(1,2),4(3,4,5)

1 PRELIMINARIES

1.1 Complex Numbers

1.1.1 General form

Definition 1.1 (Complex field)

$$\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}\$$

Operation

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

 $(a + bi)(c + di) = (ac - bd) + (ad + bc)i$

Definition 1.2

Real part:	Re(z) = a
Imaginary part:	Im(z) = b
Modulus:	$ z = \sqrt{a^2 + b^2}$
Conjugate:	$\bar{z} = a - bi$

Properties

$$|z| = z\overline{z}, \quad \frac{1}{z} = \frac{\overline{z}}{|z|} (z \neq 0)$$

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2\mathrm{i}}$$

$$\overline{z + w} = \overline{z} + \overline{w}, \quad \overline{zw} = \overline{z}\overline{w}$$

$$|zw| = |z||w|, \quad |\frac{z}{w}| = \frac{|z|}{|w|} (w \neq 0)$$

Inequalities

$$\operatorname{Re}(z) \le |z|, \quad \operatorname{Im}(z) \le |z|$$

 $|z+w| \le |z|+|w|, \quad |z-w| = ||z|-|w||$

1.1.2 Triangular form

Definition 1.3 Let $r = |z|, \theta = \arctan \frac{b}{a} = \arg(z)$, meaning $a = r \cos \theta, b = r \sin \theta$:

$$z = r(\cos\theta + i\sin\theta)$$

Therefore, we can define the **argument** of a complex number:

$$Arg(z) = \{\theta + 2k\pi | k \in \mathbb{Z}\}$$

Fixing an interval measuring 2π such as $[0, 2\pi)$, we ulteriorly define **argument** principal value:

$$\arg(z) = \theta$$

Operation Let $z_1 = r_1(\cos\theta_1 + i\sin\theta_2), z_1 = r_1(\cos\theta_1 + i\sin\theta_2)$:

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2))$$

Properties

$$|z_1 z_2| = r_1 r_2$$
$$\operatorname{Arg}(z_1 \pm z_2) = \operatorname{Arg}(z_1) \pm \operatorname{Arg}(z_2)$$

Theorem 1.1 (De Moivre's formula)

 $(r(\cos\theta + i\sin\theta))^n = r^n(\cos n\theta + i\sin n\theta)$

Theorem 1.2 (Euler's formula)

$$e^{i\theta} = \cos\theta + i\sin\theta$$

1.2 Complex Plane

Definition 1.4 (Extended complex plane)

$$\bar{\mathbb{C}} = \mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$$

Definition 1.5 (General circle) Let $A, C \in \mathbb{R}, B \in \mathbb{C}, |B|^2 - AC > 0$, and a general circle is presented in form of

$$Az\bar{z} + \bar{B}z + B\bar{z} + C = 0$$

When A = 0, it is a common circle; when $A \neq 0$, it is a line.

Stereographic projection Regarding \mathbb{C} as xOy plane, there is a one-toone correspondence between $\overline{\mathbb{C}}$ and sphere $S_2 : x^2 + y^2 + z^2 = 1$. Specifically speaking, N = (0, 0, 1), P and z are collinear.

Given z on $\overline{\mathbb{C}}$,

$$P = \left(\frac{z+\bar{z}}{|z|^2+1}, \frac{z-\bar{z}}{|z|^2+1}, \frac{|z|^2-1}{|z|^2+1}\right)$$

Given $P = (x_1, x_2, x_3)$ on S_2 ,

$$z = \frac{x_1 + ix_2}{1 - x_3}$$

Distance between two complex number

$$d(z,w) = |P - Q| = \frac{2|z - w|}{\sqrt{(1 + |z|^2)(1 + |w|^2)}}$$

Such definition guarantees boundedness, and when $w \to \infty$,

$$d(z,w) = \frac{2}{\sqrt{1+|z|^2}}$$

Theorem 1.3 Circles on S_2 corresponds to general circles on $\overline{\mathbb{C}}$ through stereographic projection one by one.

1.3 Analytic Properties of Complex Numbers

Definition 1.6 (Limit of complex series) A complex series $\{z_n\}_{n=1}^{\infty}$ converge to w, *i.e*

$$\lim_{n \to \infty} z_n = u$$

if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all n

$$n > N \Longrightarrow |z_n - w| < \varepsilon$$

Theorem 1.4

$$\lim_{n \to \infty} z_n = w$$
$$\iff \lim_{n \to \infty} |z_n - w| = 0$$
$$\iff \begin{cases} \lim_{n \to \infty} Re(z_n) = Re(w)\\ \lim_{n \to \infty} Im(z_n) = Im(w) \end{cases}$$

Definition 1.7 (Continuity) f(z) is continuous at the point z_0 if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all z

$$|z - z_0| < \delta \Longrightarrow |f(z) - f(z_0)| < \varepsilon$$

Definition 1.8 (Derivative) f(x) is derivable at the point z_0 if limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists, and we denote

$$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Definition 1.9 (Differentiability) f(x) is differentiable at the point z_0 if

$$f(z_0 + \Delta z) - f(z_0) = A(z_0)\Delta z + \rho(\Delta z)$$

where

$$\lim_{\Delta z \to z_0} \frac{\rho(\Delta z)}{\Delta z} = 0$$

In particular, differentiability is **equivalent** to derivability in the field of complex variables functions.

Definition 1.10 (Holomorphism) Abstract complex variables function f(z)

- f(z) is holomorphic in the region D if f(z) is everywhere derivable in D, denoted as $f(z) \in H(D)$.
- f(z) is holomorphic at the point z_0 if f(z) is derivable in a neighbourhood of z_0 .

2 HOLOMORPHIC FUNCTIONS

2.1 Properties of Holomorphic Functions

Expression A complex variables function f(z) can be uniquely expressed as

$$f(z) = u(x, y) + i v(x, y)$$

where $z = x + \in y$ and u, v are real-valued functions.

Definition 2.1 (Real differentiability) For f(z) = u(x, y) + iv(x, y), f(z) is real differentiable at $z_0 = x_0 + iy_0$, if u and v are differentiable at (x_0, y_0) .

Theorem 2.1 f(z) is real differentiable at z_0 if and only if

$$f(z_0 + \Delta z) - f(z_0) = \frac{\partial f}{\partial z}(z_0)\Delta z + \frac{\partial f}{\partial \bar{z}}(z_0)\Delta \bar{z} + \rho(|\Delta z|), \quad \lim_{\Delta z \to 0} \frac{\rho(\Delta z)}{\Delta z} = 0$$

where

$$\frac{\partial}{\partial z} = \frac{1}{2} (\frac{\partial}{\partial x} - i \frac{\partial}{\partial y}) \qquad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y})$$

Cauchy-Riemman equations Noticing

$$0 = \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y})(u + i v) = \frac{1}{2} (\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}) + \frac{i}{2} (\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y})$$

we call equations

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$

Cauchy-Riemman equations.

Theorem 2.2 (Determination of differentiability) f(z) is differentiable at z_0 if and only if f(z) is real differentiable at z_0 and satisfies Cauchy-Riemman equations.

Differential properties Let $f, g \in H(D)$:

$$f \pm g \in H(D) \qquad (f \pm g)' = f' \pm g'$$

$$fg \in H(D) \qquad (fg)' = f'g + fg'$$

$$\frac{f}{g} \in H(D) \qquad (\frac{f}{g})' = \frac{f'g - fg'}{g^2} \ (g(z) \neq 0)$$

Chain rule Let $f \in H(G), g \in H(D), f(G) \in D$, then $\phi(z) = f(g(z)) \in G$, and

$$\phi'(z) = g'(f(z))f'(z)$$

2.2 Harmonic Functions

Definition 2.2 (Complex Laplacian operator)

$$\Delta f = 4 \frac{\partial^2 f}{\partial z \partial \bar{z}}$$

Theorem 2.3

$$f = u + iv \in H(D) \Longrightarrow \Delta u = \Delta v = 0$$

Generally speaking, holomorphism implies harmonicity.

Definition 2.3 (Conjugate harmonic functions) Harmonic functions f, g defined in D are conjugate harmonic functions if they satisfy **Cauchy-Riemann** equations.

Existence of conjugate harmonic functions Given a simply connected region D and a harmonic function u in D, the conjugate harmonic function of u, v exists, and $f = u + i v \in H(D)$.

In fact,

$$v(x,y) = \int_{(x_0,y_0)}^{(x,y)} -\frac{\partial u}{\partial y} \, \mathrm{d}x + \frac{\partial u}{\partial x} \, \mathrm{d}y$$

2.3 Geometric Properties of Derivative

Definition 2.4 (Smoothness of a curve) Let $\gamma : [a, b] \to \mathbb{C}, t \mapsto x(t) + iy(t)$

- γ is smooth in [a, b] if $\gamma'(t)$ exists in [a, b].
- γ is piecewise smooth in [a, b] if $\exists a = t_0 < t_1 < \cdots < t_n = b$, $\gamma(t)$ is smooth in $[t_{i-1}, t_i]$.

Definition 2.5 (Tangent of a curve) For curve $\gamma(t)$, the angle between its tangent and positive z-axis at z_0 is $Arg(\gamma'(z_0))$.

Definition 2.6 (Conformal mapping) Function f is conformal, if the angle between 2 curves equals that between their images under f.

Theorem 2.4 Conformal functions have following properties:

- $f \in H(\Omega), f'(z_0) \neq 0 \Longrightarrow f$ is conformal in the neighborhood of z_0 .
- $f \in H(\Omega), f'(z_0) = 0 \Longrightarrow f$ is **never** conformal at z_0 .
- $f \in H(\Omega)$, f is a bijection from Ω to $D, f(z) \neq 0 \Longrightarrow f$ is conformal in Ω .
- $f \in H(\Omega), f$ is conformal in $\Omega \Longrightarrow f'(z) \neq 0.$

Definition 2.7 (Modulus of derivative) $|f'(z_0)|$ indicates the ratio of scaling of f at z_0 :

$$|f'(z_0)| = \lim_{z \to z_0} |\frac{f(z) - f(z_0)}{z - z_0}| = \lim_{z \to z_0} \frac{|w - w_0|}{|z - z_0|}$$

2.4 Primary Complex Variables Functions

2.4.1 Exponential function

Definition 2.8 (Exponential function)

$$e^z = e^x(\cos y + i\sin y)$$

where z = x + iy.

Properties Exponential function has following properties:

1.
$$|e^{z}| = e^{x} |\cos y + i\sin y| = e^{x} > 0.$$

2. $e^{z_{1}+z_{2}} = e^{z_{1}}e^{z_{2}}.$
3. $e^{z} = e^{z+2k\pi i}, k \in \mathbb{Z}.$
4. $e^{z} \in H(\mathbb{C}).$

Definition 2.9 (Univalent domain) A function satisfying

$$z_1 \neq z_2 \Longrightarrow f(z_1) \neq f(z_2)$$

is called a univalent function.

Additionally, if f(z) is univalent in region D, D is called a **univalent do**main of f(z).

Univalent domains of exponential function

$$e^{z_1} = e^{z_2} \iff z_1 - z_2 \neq 2k\pi$$

Theorem 2.5 Abstract $f(z) = e^z$ and zonal region

$$D = \{ z | Im(z) \in (0, h) \}, \ h < 2\pi$$

D is a univalent domain of f(z), and

$$f: D \mapsto \Omega \tag{1}$$

where

$$\Omega = \{re^{i\theta} | r > 0, 0 < \theta < h\}$$

2.4.2 Logarithmic function

Definition 2.10 (Logarithmic function)

$$Log z = \log |z| + i \operatorname{Arg} z$$

It is a multivalue function.

Single valued branch The k-th single valued branch of Log z is $(\text{Log} z)_k$, i.e.

$$(\operatorname{Log} z)_k = \log |z| + \operatorname{i} \arg z + 2k\pi \operatorname{i}$$

Without confusion, it is denoted as $\log z$.

Properties A single valued branch of a logarithmic function has following properties:

- 1. Domain of definition: $\mathbb{C}\setminus\{0\}$.
- 2. Not continous in $(0, +\infty) \subset \mathbb{C} \setminus \{0\}$.

Definition 2.11 (Variation of multivalue function) Abstract F(z) defined in Ω , $z_0 \in \Omega$ and its initial value $f(z_0)$. When z goes to z_0 continuously along curve $C \subset \Omega$, f(z) also goes to a well-determined value $f(z_0)$. Here we call define the variation of F(z) along C, and denote

$$\Delta_C F(z) = f(z) - f(z_0)$$

Definition 2.12 (Single valued domain) Ω is a single valued domain of F(z), if $\Delta_C F(z)$ depends on z and z_0 , rather than the selection of C. Then F(z) has a single valued branch in Ω .

Theorem 2.6 Ω is a single valued domain of F(z) if and only if

$$\Delta_C F(z) = 0$$

for all simple closed curves in Ω .

Definition 2.13 (Branch point) A point z_0 is a branch point if it satisfies following requirements:

- 1. $\exists r > 0, s.t. B_r(z_0) \subset \Omega$ and F(z) is definable in $\check{B}_r(z_0)$.
- 2. Every point in $\check{B}_r(z_0)$ is an ordinary point, i.e. every point has a neighbord, in which F(z) has a single valued branch.
- 3. An arbitrarily small deleted neighborhood of z_0 has a simple closed curve C surrounding z_0 , s.t. $\Delta_C F(z) \neq 0$.

2.4.3 Power function

Definition 2.14 (Power function)

$$f(z) = z^{\alpha} = e^{\alpha \log z}, \ \alpha \in \mathbb{C}$$

Several common cases According to α , power functions are classified into several cases:

- $\alpha = n \in \mathbb{N}$: $f(z) = z^n \in H(\mathbb{C})$ • $\alpha = \frac{1}{n}, n \in \mathbb{N}$: $f(z) = z^{\frac{1}{n}} = e^{\frac{1}{n} \log |z|} e^{i \frac{1}{n} \operatorname{Arg}(z)} = |z|^{\frac{1}{n}} e^{i \frac{1}{n} (\operatorname{arg}(z) + 2k\pi)}$
- $\alpha = a + bi, a, b \in \mathbb{R}$: $f(z) = e^{(a+bi)(\log|z|+i\operatorname{Arg}(z))} = e^{a\log|z|-b\operatorname{Arg}(z)}e^{i(b\log|z|+a\operatorname{Arg}(z))}$

Classified discussion of value Let $\alpha = a + bi, a, b \in \mathbb{R}$:

• b = 0, a = n:

$$f(z) = z^n$$

is a single valued function.

• $b = 0, a = \frac{p}{q}$:

$$f(z) = z^{\frac{p}{q}} = e^{\frac{p}{q} \log |z|} e^{i \frac{p}{q} \operatorname{Arg}(z)} = |z|^{\frac{p}{q}} e^{i \frac{p}{q} (\arg(z) + 2k\pi)}$$

is a q-valued function.

• $b = 0, a \in \mathbb{R} \setminus \mathbb{Q}$:

$$f(z) = |z|^a e^{i a(\arg(z) + 2k\pi)}$$

is an infinitely valued function.

• $b \neq 0$:

$$|f(z)| = e^{a \log |z| - b \operatorname{Arg}(z)} = e^{a \log |z| - b \operatorname{Arg}(z) + 2k\pi}$$

This indicate that f(z) is an infinitely valued function.

Theorem 2.7 (Root of polynomials) Abstract

$$F(z) = \sqrt[n]{R(z)}$$

where

$$R(z) = \prod_{i=1}^{m} (z - a_i)^{n_i}, \ n_i \in \mathbb{Z}$$

Then F(z) has a single valued branch in Ω if and only if every simple closed curve C:

$$n \left| \sum_{a_j in C} n_j \right|$$

Furthermore, ∞ is a branch point of F(z) if and only if

$$n \left| \sum_{j=1}^{m} n_j \right|$$

2.4.4 Triangular function

Definition 2.15 (Triangular function)

$$\cos z = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$
$$\sin z = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$

2.5 Linear Fractional Transformation

Definition 2.16 (LFT) A linear fractional transformation is shaped like

$$f(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$ and

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$$

 $f(z) = z + b, \ b \in \mathbb{C}$

Definition 2.17 Four simple LFTs:

- 1. Translation:
- 2. Rotation: $f(z) = e^{i\theta}z, \ \theta \in \mathbb{R}$ 3. Scaling: $f(z) = rz, \ r > 0$
- 4. Inversion:

$$f(z) = \frac{1}{z}$$

Theorem 2.8 (Decomposition) All LFTs are recombined by four simple transforms.

Theorem 2.9 A LFT is a bijection in \mathbb{C} .

Theorem 2.10 A LFT is an identity, if it has 3 fixed points.

Theorem 2.11 (Existence and uniqueness) Given different z_1, z_2, z_3 and different w_1, w_2, w_3 , there is a unique LFT s.t.

$$f(z_i) = w_i, \ i = 1, 2, 3$$

Definition 2.18 (Cross ratio)

$$(z, z_1, z_2, z_3) = \frac{z - z_2}{z - z_3} \frac{z_1 - z_3}{z_1 - z_2}$$

Theorem 2.12 A cross ratios is invariant under a LFT.

Theorem 2.13 (Circle remaining) A LFT map a circle into a circle.

Theorem 2.14 z_1, z_2, z_3, z_4 are concylic if and only if

$$Im(z_1, z_2, z_3, z_4) = 0$$

Definition 2.19 (Left and right) if z_1, z_2, z_3 lies on a circle in order, we naturally define their left hand side and right hand side.

Theorem 2.15 z is on the left hand side of z_1, z_2, z_3 if and only if

$$Im(z, z_1, z_2, z_3) > 0$$

z is on the right hand side of z_1, z_2, z_3 if and only if

$$Im(z, z_1, z_2, z_3) < 0$$

A following corollary is that:

If z is on the left hand side of z_1, z_2, z_3 , then f(z) is on the left hand side of $f(z_1), f(z_2), f(z_3)$, where f(z) is a LFT. The same is true of "right hand side".

Definition 2.20 (Symmetric points) Given a point z_1 not on circle C : |z - a| = R, z_2 is the symmetric point of z_1 if

$$|z_1 - a||z_2 - a| = R^2$$

In other words,

$$z_2 = a + \frac{R^2}{\bar{z} - \bar{a}}$$

That's to say, $re^{i\theta}$ and $\frac{R^2}{r}e^{i\theta}$ are symmetric points.

A

Theorem 2.16 (Determination of symmetric points) z_1 and z_2 are symmetric about

$$A|z|^2 + B\bar{z} + \bar{B}z + C = 0$$

if

$$Az_1 z_2 + B\bar{z_1} + \bar{B}z_2 + C = 0$$

Theorem 2.17 Abstract circles C_1, C_2 , and

 $f: C_1 \mapsto C_2$

A LFT maps symmetric points about C_1 into symmetric points about C_2 .

Transform of regions Functions we mentioned above transform some special regions into other special regions.

- $f(z) = \frac{az+b}{cz+d}$: straight line/circle \longrightarrow straight line/circle.
- $f(z) = e^z$: zonal region \longrightarrow angular region.
- f(z) = Log(z): angular region \longrightarrow zonal region .
- $f(z) = z^n \colon \theta \longrightarrow n\theta.$
- $f(z) = z^{\frac{1}{n}} \colon \theta \longrightarrow \frac{1}{n} \theta.$
- $f(z) = \frac{1}{2}(z + \frac{1}{z})$: a recombination of z^2 and $\frac{1+z}{1-z}$.

Univalent domains of cosine function

 $\cos z_1 = \cos z_2 \iff z_1 + z_2 \neq 2k\pi, \ z_1 - z_2 \neq 2k\pi$

3 COMPLEX INTEGRAL

3.1 Cauchy Integral Formula

Definition 3.1 (Rectifiable curve) Curve γ , rectifiable, if is length

$$L(\gamma) = \sup_{||\pi||} \sum_{k} |\gamma(t_k) - \gamma(t_{k-1})| < \infty$$

Definition 3.2 (Complex integral) Let f(t) = x(t) + iy(t) be a complexvalued continuous function in [a, b], we define:

$$\int_a^b f(t) \, \mathrm{d}t = \int_a^b x(t) \, \mathrm{d}t + i \int_a^b y(t) \, \mathrm{d}t$$

Operation of complex integral Let f(t) = x(t) + i y(t) be a complex-valued continuous function in $[a, b], c \in \mathbb{C}$:

$$\operatorname{Re}\left(\int_{a}^{b} f(t) \, \mathrm{d}t\right) = \int_{a}^{b} x(t) \, \mathrm{d}t$$
$$\operatorname{Im}\left(\int_{a}^{b} f(t) \, \mathrm{d}t\right) = \int_{a}^{b} y(t) \, \mathrm{d}t$$
$$c \int_{a}^{b} f(t) \, \mathrm{d}t = \int_{a}^{b} cf(t) \, \mathrm{d}t$$

Absolute value inequality

$$\left|\int_{a}^{b} f(t) \, \mathrm{d}t\right| \leq \int_{a}^{b} \left|f(t)\right| \, \mathrm{d}t$$

Definition 3.3 (Curvilinear integral) Let $\gamma : [a,b] \longrightarrow \mathbb{C}$ be smooth, f(z) be a continuous conplex-valued function, and we define:

$$\int_{\gamma} f(z) \, \mathrm{d}z = \int_{a}^{b} f(\gamma(t)) \gamma'(t) \, \mathrm{d}t$$

As for a piecewise smooth curve, we similarly define:

$$\int_{\gamma} f(z) \, \mathrm{d}z = \sum_{k} \int_{t_{k}}^{t_{k-1}} f(\gamma(t)) \gamma'(t) \, \mathrm{d}t$$

As for a rectifiable curve, the definition returns to a Riemann sum:

$$\int_{\gamma} f(z) \, \mathrm{d}z = \lim_{||\pi|| \to 0} \sum_{k} f(z_k) |z_k - z_{k-1}|$$

Theorem 3.1 (Estimation lemma)

$$|\int_{\gamma} f(z) \, \mathrm{d}z| \le ML(\gamma)$$

where

$$M = \sup_{z \in \gamma} |f(z)|$$

Respective integral Let f = u + iv, $\gamma = x + iy$:

$$\int_{\gamma} f(z) \, \mathrm{d}z = \int_{a}^{b} (u(\gamma) + \mathrm{i} v(\gamma))(x' + \mathrm{i} y') \, \mathrm{d}t$$
$$= \int_{a}^{b} (ux' - vy' + \mathrm{i}(vx' + uy')) \, \mathrm{d}t$$
$$= \int_{a}^{b} (u \, \mathrm{d}x - v \, \mathrm{d}y + \mathrm{i}(v \, \mathrm{d}x + u \, \mathrm{d}y))$$
$$= \int_{a}^{b} (u + \mathrm{i} v)(\, \mathrm{d}x + \mathrm{i} \, \mathrm{d}y))$$

Theorem 3.2 (Green's formula) Let Ω be a simply connected region, $P, Q \in C^1(\Omega)$:

$$\int_{\partial\Omega} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, \mathrm{d}x \, \mathrm{d}y$$

Theorem 3.3 (Cauchy integral theorem) Abstract a simply connected region Ω , $f(z) \in H(\Omega)$. For each rectifiable closed curve $\gamma \subset \Omega$,

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

Additionally, if f(z) is continuous in $\overline{\Omega}$, we deduce

$$\int_{\partial\Omega} f(z) \, \mathrm{d}z = 0$$

Theorem 3.4 (Cauchy integral theorem in multiple connected regions) Abstract a region D surrounded by n+1 simple closed curves $\gamma_0, \gamma_1, \dots, \gamma_n$ and define $\partial D = \gamma_0^+ \cup \gamma_1^- \cup \dots \cup \gamma_n^-$,

$$f \in H(D) \cap C(\overline{D}) \Longrightarrow \int_{\partial D} f(z) \, \mathrm{d}z = \int_{\gamma_0} f(z) \, \mathrm{d}z - \sum_{k=1}^n \int_{\gamma_k} f(z) \, \mathrm{d}z = 0$$

3.2 Complex Fundamental Theorem of Calculus

Definition 3.4 (Primitive) Given f(z), if $F(z) \in H(\Omega)$ and F'(z) = f(z), we call F(z) the primitive of f(z).

Theorem 3.5 (Complex Newton-Leibniz formula) Let $\gamma : [a, b] \longrightarrow \mathbb{C}$ be piecewise smooth. If f(z) has a primitive F(z),

$$\int_{\gamma} f(z) \, \mathrm{d}z = F(\gamma(b)) - F(\gamma(a))$$

An immediate corollary is that:

Given a f(z) defined above and a closed curve γ ,

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0 \tag{2}$$

Meanwhile, if \exists a closed curve γ_0 s.t.

$$\int_{\gamma} f(z) \, \mathrm{d}z \neq 0$$

f(z) has no primitive.

Derivative of constant function

$$f(z) \in H(\Omega), \ f'(z) = 0 \Longrightarrow f(z) = Const$$

Deriving a primitive Let Ω be a simply connected region, $z_0 \in \Omega, f(z) \in H(\Omega)$,

$$F(z) = \int_{z_0}^{z} f(w) \, \mathrm{d}w \in H(\Omega), \ F'(z) = f(z)$$

Existence of primitives in multiple connected region Let $f(z) \in H(\Omega) \cap C(\overline{\Omega})$, then f(z) has a primitive in Ω if and only if

$$\int_{\gamma_k} f(z) \, \mathrm{d}z = 0, \; \forall k = 1, 2, \cdots, n$$

Single valued branch of a primitive Let $\Omega_j \subset \Omega$ are simply connected regions s.t.

$$\int_{\partial\Omega_j} f(z) \, \mathrm{d}z \neq 0$$

then all single valued branch of F(z) are

$$F_0(z) + \sum_{j=1}^n n_j \int_{\partial \Omega_j} f(z) \, \mathrm{d}z, \ n_j \in \mathbb{Z}$$

3.3 Cauchy Integral Formula

Theorem 3.6 (Cauchy integral formula) Let $f(z) \in H(\Omega) \cap C(\overline{\Omega}), \gamma$ be a simple closed curve:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, \mathrm{d}w$$

Namely, internal values are determined by boundary values.

Theorem 3.7 (Cauchy integral formula) Let curve $\gamma \subset \Omega$, $\phi(z) \in C(\gamma)$, $F(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{\phi(w)}{w-z} dw$, we have:

- $F(z) \in H(\Omega \setminus \gamma).$
- $F^{(n)}(z)$ exists, and

$$F^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{\phi(w)}{(w-z)^{n+1}} \, \mathrm{d}w$$

This theorem provides a method of integrating:

$$\int_{\gamma} \frac{f(w)}{(w-z)^m} \, \mathrm{d}w = \frac{2\pi \mathrm{i}}{(m-1)!} f^{(m-1)}(z)$$

Theorem 3.8 (Cauchy's inequality) For bounded function $f(z) \in H(B_R(a))$,

$$|f^{(n)}(a)| \le \frac{n!}{R^n} M$$

where M is a upper bound of |f(z)| in $B_R(a)$, and n is an integer.

Definition 3.5 (Entire function) A holomorphic function in the entire complex plane is called a entire function. Theorem 3.9 (Liouville theorem) Bounded entire functions are constants.

Theorem 3.10 (Fundamental theorem of algebra) A polynomial function with complex coefficients has at least one complex root in complex field.

Theorem 3.11 (Morera theorem) Abstract $f(z) \in C(\Omega)$,

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0, \forall \gamma \subset \Omega \Longrightarrow f(z) \in H(\Omega)$$

Definition 3.6 (Boundless region surrounded by curves) As for simple closed curves $\gamma_1, \gamma_2, \dots, \gamma_n$, their joint exterior D is called the boundless region surrounded by $\gamma_1, \gamma_2, \dots, \gamma_n$, and its boundary is $\partial D = \gamma_1^- \cup \gamma_2^- \cup \dots \cup \gamma_n^-$.

Theorem 3.12 (Cauchy theorem in boundless region) Abstract boundless region D surrounded by curve γ , $f(z) \in H(D) \cap C(\overline{D})$ s.t.

$$\lim_{z \to \infty} z^2 f(z) = a \in \mathbb{C}$$

 $we \ have$

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0$$

Theorem 3.13 (Cauchy's formula in boundless region) Abstract boundless region Ω surrounded by curve γ and $f(z) \in H(\Omega) \cap C(\overline{\Omega}), f(\infty) \in \mathbb{C}$, then

$$f(z) = f(\infty) + \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, \mathrm{d}w$$
$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z)^{n+1}} \, \mathrm{d}w$$

Theorem 3.14 (A variant of Cauchy's inequality) Abstract $f(z) \in H(B_R(a))$, we have

$$|f'(a)| \le \frac{2M}{R}$$

where $|Re(f(z))| \leq M$.

4 COMPLEX SERIES

4.1 Convergence of Complex Series

Definition 4.1 (Convergence of complex series) Abstract complex series $\{z_n\}$, let

$$S_n = \sum_{k=1}^n z_k$$

The series $\sum_{n=1}^{\infty} z_n$ is convergent if

$$S_n \to S, n \to \infty$$

Equivalently, $\sum_{n=1}^{\infty} z_n$ is convergent if and only if the following two real series

$$\sum_{n=1}^{\infty} \operatorname{Re}(z_n) \qquad \sum_{n=1}^{\infty} \operatorname{Im}(z_n)$$

are convergent.

Theorem 4.1 (Cauchy's criterion of convergence) $\sum_{n=1}^{\infty} z_n$ is convergent if and only if for every $\varepsilon > 0$, there exists a N > 0 such that

$$n_2 > n_1 > N \Longrightarrow |z_{n_1+1} + \dots + z_{n_2}| < \varepsilon$$

Definition 4.2 (Convergence of complex series of functions) Abstract complex series of functions $\{f_n(z)\}$, the series $\sum_{n=1}^{\infty} f_n(z)$ is convergent if for all z in E, $\sum_{n=1}^{\infty} f_n(z)$ is convergent.

Additionally, The sum function of the series is define as

$$S(z) = \sum_{n=1}^{\infty} f_n(z)$$

Definition 4.3 (Uniform convergence) $S_n(z)$ uniformly converge to S(z) if for every $\varepsilon > 0$, there exists a N > 0 such that for all z in E,

$$n > N \Longrightarrow |S_n(z) - S(z)| < \varepsilon$$

While **Cauchy's criterion of convergence** and **Weierstrass test** holds for uniform convergence.

Definition 4.4 (Internally closed uniform convergence) $\sum_{n=1}^{\infty} f_n(z)$ is Internally closed uniformly convergent if it is uniformly convergent in each compact set in E.

4.2 Power Series

Definition 4.5 (Convergence radius) For power series $\sum_{n=0}^{\infty} a_n z^n$, its convergence radius is

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

The convergence radius shows that

$$\begin{aligned} |z| < R \Longrightarrow \sum_{n=0}^{\infty} a_n z^n < +\infty \\ |z| > R \Longrightarrow \sum_{n=0}^{\infty} a_n z^n = +\infty \end{aligned}$$

Theorem 4.2 (Holomorphism of power series) Abstract a function in form of power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

whose convergence radius is R. Then

- 1. $f(z) \in H(B_R(0))$
- 2. $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$
- 3. f'(z) is convergent and holomorphic in $B_R(0)$

Additionally, we deduce that power series is infinitely derivable in its convergence domain.

Definition 4.6 (Analyticity) f(z) is analytic at z_0 if it can expand into power series at z_0 , and it is analytic in D if it is analytic at every point in D.

Theorem 4.3 (Abel theorem) Abstract

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

whose convergence radius is R = 1. If it converge to S at z = 1, f(z) is uniformly convergent in \overline{A} and

$$\lim_{|z|<1\atop z\to 1} f(z) = S$$

where

$$A = \{ z \mid \pi - \theta_0 < \arg(z - 1) < \pi + \theta_0 \} \cap B_1(0), \ \theta_0 \in (0, \frac{\pi}{2})$$

is an angular region.

Theorem 4.4 If series

$$\sum_{n=1}^{\infty} \frac{a_n}{n^z}$$

is convergent at $z_0 = x_0 + iy_0$, then

- 1. It converges in $\{z \mid Re(z) > x_0\}$
- 2. It uniformly converges in \overline{A} , where $A = \{z \mid \theta_0 < \arg(z z_0) < \theta_0\}$
- 3. There exists a convergence line Re(z) = C, it converge when Re(z) > C

Definition 4.7 (Riemann's zeta function) The convergence line of series

$$\sum_{n=1}^\infty \frac{1}{n^z}$$

is Re(z) = 1. It can be extended to $\mathbb{C} \setminus \{1\}$, called Riemann's zeta function.

Theorem 4.5 (Termwise integration) If $f_n(z)$ is continuous in curve γ and

$$\sum_{n=1}^{\infty} f_n(z) \rightrightarrows f(z)$$

then we have

$$\int_{\gamma} f(z) \, \mathrm{d}z = \sum_{n=1}^{\infty} \int_{\gamma} f_n(z) \, \mathrm{d}z$$

Theorem 4.6 (Uniform convergence of higher order derivatives) For $f_n(z) \in H(\Omega)$, if

$$\sum_{n=1}^{\infty} f_n(z)$$

internally closed uniformly converge to f(z)

Theorem 4.7 (Holomorphism of multivariate function) If

$$F(z,s): \Omega \times [0,1] \longrightarrow \mathbb{C}$$

satisfying

1. $\forall s \in [0,1], F(z,s)$ is a holomorphic function of z

2.
$$F(z,s) \in C(\Omega \times [0,1])$$

 $the \ function$

$$f(z) = \int_0^1 F(z,s) \, \mathrm{d}s$$

is holomorphic in Ω .

4.3 Taylor Expansion of Holomorphic Functions

Theorem 4.8 (Taylor expansion) Let $f(z) \in H(\Omega), \overline{B}_r(z_0) \subset \Omega$, then f(z) can uniquely expand into a power series

$$f(z) = \sum_{n=0}^{n} a_n (z - z_0)^n$$

where

$$a_n = \frac{1}{n!} f^{(n)}(z_0), \ z = B_r(z_0)$$

This theorem implies that holomorphism is equivalent to analyticity.

Theorem 4.9 (Multiplicity of zero) For $f(z) \in H(z_0)$, $f(z_0) = 0$, we have following results:

$$f^{(n)}(z_0) = 0, \forall n \Longrightarrow a_0 = a_1 = \dots = 0 \Longrightarrow f(z) = 0, \forall z \in B_{\delta}(z_0)$$

$$f^{(n)}(z_0) = 0, \forall n \le m, f^{(m)}(z_0) \ne 0 \Longrightarrow f(z) = a_m (z - z_0)^m (1 + \frac{a_{m+1}}{a_m} z + \dots)$$

In the second situation, z_0 is a zero of multiplicity m.

Theorem 4.10 (Isolatism of zeros) The set of zeros of a holomorphic, i.e. for $f(z) \in H(\Omega)$

$$\exists \, \{z_n\}_{n=1}^\infty \subset \Omega, z_n \to z_0 \in \Omega, f(z_n) = 0, \forall n \Longrightarrow f(z) = 0, \forall z \in \Omega$$

Theorem 4.11 (Uniqueness theorem) For $f_1(z), f_2(z) \in H(\Omega)$, if

$$\exists \{z_n\} \subset \Omega, z_n \to z_0, z_n \neq z_0, f_1(z_n) = f_2(z_n)$$

then $f_1(z) = f_2(z)$ in Ω .

4.4 Laurent Expansion

4.4.1 Laurent series

Definition 4.8 (Laurent series)

$$\sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n = \sum_{n=0}^{+\infty} a_n (z-z_0)^n + \sum_{n=-\infty}^{-1} a_n (z-z_0)^n$$
(3)

The part similar to Taylor series is its **holomorphic part**, while the other part is its **main part**. The series is convergent if and only if the two parts above are convergent.

Convergence domain Suppose the convergence radius of the holomorphic part is R, and let $w = \frac{1}{z-z_0}$, then the main part

$$\sum_{n=-\infty}^{-1} a_n (z - z_0)^n = \sum_{n=1}^{+\infty} a_n w^n$$

Suppose the convergence radius of the series of w is ρ , then the convergence domain of series (3) is an annulus

$$\{ z \, | \, \frac{1}{\rho} < |z - z_0| < R \}$$

Theorem 4.12 (Laurent expansion) Abstract a holomorphic function f(z) in annulus $\{z | r < |z - z_0| < R\}$, it can expand into a unique Laurent series in form of (3), where

$$a_n = \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(w)}{(w-z_0)^{n+1}} \, \mathrm{d}w$$

and $r < \rho < R$.

4.4.2 Isolated singularity

Classification If $f(z) \in H(B_r(z_0))$ has no definition at point z_0 , we call z_0 an **isolated singularity** of f(z). Moreover, we can classify them into three type by the Laurent expansion of f(z):

- 1. Removable singularity: No negative power term
- 2. Pole: Finite negative power terms
- 3. Essential singularity: Infinite negative power terms

Removable singularity Following propositions are equivalent:

- 1. z_0 is a removable singularity of f(z)
- 2. f(z) is bounded in a deleted neighborhood of z_0
- 3. The Laurent expansion of f(z) at z_0 has no negative power term
- 4. The limit

 $\lim_{z \to z_0} f(z)$

exists and is finite

Pole Following propositions are equivalent:

- 1. z_0 is a pole of f(z)
- 2. $\lim_{z \to z_0} f(z) = \infty$
- 3. $\exists m > 0$, s.t. $g(z) = (z z_0)^m f(z)$ is a holomorphic function in $B_{\delta}(z_0)$ and has no zero in $B_{\delta}(z_0)$
- 4. The Laurent expansion of f(z) at z_0 has finite negative power terms
- 5. $\exists m > 0$, s.t. the limit

$$\lim_{z \to z_0} (z - z_0)^m f(z)$$

exists and isn't 0.

6.
$$\exists m > 0$$
, s.t. z_0 is an *m*th-order zero of $g(z) = \frac{1}{f(z)}$

Here m is called the order of pole z_0 .

Essential singularity Following propositions are equivalent:

- 1. z_0 is an essential singularity of f(z)
- 2. $\lim_{z\to z_0}$ doesn't exist
- 3. The Laurent expansion of f(z) at z_0 has infinite negative power terms
- 4. $\forall A \in \overline{\mathbb{C}}, \exists \{z_n\} \subset \check{B}_{\delta}(z_0), \text{ s.t.}$

$$\lim_{n \to \infty} f(z_n) = A$$

Infinite isolated singularity If f(z) is a holomorphic function in $\{z \mid |z| > R\}$, ∞ is an isolated singularity of f(z). And if $z = \infty$ is an isolated singularity of f(z), the type of $z = \infty$ of f(z) is identical to that of z = 0 of $f(\frac{1}{z})$. For example,

• ∞ isn't an isolated singularity of

$$f(z) = \frac{1}{\sin z}$$

• ∞ is an *n*th-order pole of

$$f(z) = \sum_{k=0}^{n} a_k z^k$$

where $a_n \neq 0$

4.5 Meromorphic Function

Definition 4.9 (Entire function) A holomorphic function in \mathbb{C} is an entire function.

Infinite isolated singularity of entire functions $z = \infty$ is an isolated singularity of an entire function f(z), and

- $z = \infty$ is a removable singularity of $f(z) \iff$ if f(z) = Const
- $z = \infty$ is a pole of $f(z) \iff$ if f(z) is a polynomial
- $z = \infty$ is an essential singularity of f(z) if and only if

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \ \overline{\lim}_{n \to \infty} |a_n| > 0$$

Definition 4.10 (Meromorphism) f(z) is meromorphic in region $D \in \mathbb{C}$, if f(z) is holomorphic in every point in D except its poles.

Theorem 4.13 (Rational function) Every meromorphic function can be presented in form of rational function, *i.e.*

$$f(z) = \frac{P(z)}{Q(z)}$$

where P(z) and Q(z) are two polynomials.

Theorem 4.14 A meromorphic bijection in \mathbb{C} is an LFT.

Theorem 4.15 If the inverse function of an entire function f(z) exists and is entire, we have

f(z) = az + b

5 ESTIMATION OF FUNCTIONS

5.1 Maximum Modulus Principle

Theorem 5.1 (Maximum modulus principle) If $f(z) \in H(D)$ is nonconstant, |f(z)| doesn't reach it maximum in D.

Another expression of this theorem is

Theorem 5.2 For
$$f(z) \in H(D) \cap C(D)$$
, $\forall z \in D$,
 $|f(z)| \le \max_{w \in \partial D} |f(w)|$

Theorem 5.3 (Extremum principle of harmonic functions) If u(x, y) is a harmonic and nonconstant function in region D, u(x, y) dosen't reach its maximum and minimum in D.

Abstracting $g(z) = \frac{1}{f(z)}$, we can deduce a useful proposition:

Theorem 5.4 (Minimum principle) If $f(z) \in H(D)$ is nonconstant and $f(z) \neq 0, \forall z \in D$, then f(z) doesn't reach it minimum in D.

5.2 Schwartz's Lemma

Theorem 5.5 (Schwartz's lemma) Abstract holomorphic function in unit disc $\mathbb{D} = \{z \mid |z| < 1\}$:

$$f:\mathbb{D}\longrightarrow\mathbb{D}$$

and f(0) = 0, we can deduce following conclusions:

- 1. $|f(z)| \leq |z|, \forall z \in \mathbb{D}$
- 2. If $|f(z_0)| = |z_0|, z_0 \neq 0$, then f(z) is a rotation, i.e $\exists \theta_0 \in \mathbb{R}$, s.t

$$f(z) = e^{i\theta_0} z$$

3. $|f'(0)| \leq 1$, and the equility holds if and only if f(z) is a rotation

Definition 5.1 (Conformal equivalence) Abstract holomotphic bijection

$$f: U \longrightarrow V$$

It is a conformal mapping, then U and V are conformal equivalent or biholomorphic equivalent.

Definition 5.2 (Holomorphic automorphism) A conformal function

 $f: U \longrightarrow U$

is called a holomorphic automorphism of U.

All holomorphic automorphism of U compose a group Aut(U).

Theorem 5.6 (Particular holomorphic automorphisms)

$$\begin{aligned} Aut(\mathbb{C}) &= \{az+b \mid a \neq 0, b \in \mathbb{C}\}\\ Aut(\bar{\mathbb{C}}) &= \{\frac{az+b}{cz+d} \mid ad-bc \neq 0\}\\ Aut(\mathbb{D}) &= \{e^{i\theta}\frac{z-\alpha}{1-\bar{\alpha}z} \mid \theta \in \mathbb{R}, |\alpha| < 1\} \end{aligned}$$

5.3 Argument Principle

Definition 5.3 (Argument Principle) Let $N(f,\gamma)$ be the total orders of the zeros of f(z) in simple closed curve γ , $P(f,\gamma)$ be that of poles, then

$$N(f,\gamma) - P(f,\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{df(z)}{f(z)}$$
$$= \frac{1}{2\pi i} \int_{\sigma} \frac{dw}{w} = \frac{1}{2\pi} \Delta_{\sigma} Arg(w) = \frac{1}{2\pi} \Delta_{\gamma} Arg(z)$$

Theorem 5.7 (Rouché's theorem) If $f(z), g(z) \in H(D), \gamma \subset D$ satisfy

$$|g(z)| < |f(z)|, \ \forall z \in \gamma$$

the number of zeros of f(z) and $f(z) \neq g(z)$ is the same in the region surrounded by γ .

Definition 5.4 (Open mapping) A open mapping maps an open set into an open set, *i.e.*

$$f(B_{\delta}(z_0)) \supset B_{\rho}(w_0)$$

Specifically, holomorphic functions are open mappings.

Theorem 5.8 Abstract a nonconstant function $f(z) \in H(\Omega), f(0) = 0$. For a sufficiently small $\rho > 0, \exists > \delta > 0$, when $0 < |w_0| < \delta$, $f(z) - w_0$ has a zero in $B_{\rho}(0)$. Additionally, if 0 is an mth-order zero, the result above is improved into $f(z) - w_0$ has m zeros in $B_{\rho}(0)$.

Theorem 5.9 For nonconstant $f(z) \in H(\Omega)$, $f(z_0) = w_0$ and sufficiently small $\rho > 0$, $\exists \delta > 0$, s.t.

$$B_{\delta}(w_0) \subset B_{\rho}(z_0)$$

Theorem 5.10 A nonconstant holomorphic function maps regions into regions.

Theorem 5.11 (Differential property of univalent functions) For a univalent function f(z) in Ω ,

 $f'(z) \neq 0, \forall z \in \Omega$

Inversely, if $f(z_0) \neq 0, \exists \varepsilon_0 > 0, s.t. f(z)$ is univalent in $B_{\varepsilon_0}(z_0)$.

Theorem 5.12 (Inverse function of univalent functions) The inverse function of a univalent holomorphic function is a univalent holomorphic function.

5.4 Residue Theorem

Definition 5.5 (Residue) For $f \in H(\check{B}_r(a))$, we define its residue at a:

$$\operatorname{Res}(f,a) = \frac{1}{2\pi i} \int_{|z-a|=\rho} f(z) \, \mathrm{d}z$$

where $\rho \in (0, r)$.

In particular, if the Laurent expansion of f at a is

$$f(z) = \sum_{n=-\infty}^{+\infty} = c_n (z-a)^n$$

then $\operatorname{Res}(f, a) = c_{-1}$.

Residue around singularity The value of a residue around a sigularity *a* relies on the type of the singularity.

- 1. Removable singularity: $\operatorname{Res}(f, a) = 0$
- 2. First-order Pole: $\operatorname{Res}(f, a) = c_{-1}$
- 3. *m*th-order singularity: $\text{Res}(f, a) = \frac{((z-a)^m f(z))^{(m-1)}}{(m-1)!}|_{z=a}$

Theorem 5.13 (Residue theorem) For $f \in H(D \setminus \{z_1, \dots, z_n\}) \cap C(\overline{D} \setminus \{z_1, \dots, z_n\})$, we have

$$\int_{\partial D} f(z) \, \mathrm{d}z = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_k)$$

Definition 5.6 (Infinite residue) For $f \in H(\mathbb{C} \setminus B_R(0))$, we define

$$\operatorname{Res}(f,\infty) = -2\pi i \int_{|z|=\rho} f(z) \, \mathrm{d}z$$

where $\rho > R$.

Theorem 5.14 (Infinity residue theorem) For $f \in H(D \setminus \{z_1, \dots, z_n\})$, the sum of residues of f around all its isolated singularity is 0, i.e.

$$Res(f,\infty) + \sum_{k=1}^{n} Res(f,z_k) = 0$$

6 HOLOMORPHIC EXTENSION

6.1 Schwartz's Principle of Symmetry

Definition 6.1 (Holomorphic extension) For region D and $f \in H(D)$, if there exists a region $G \supset D$ and $F \in H(G)$, s.t.

$$F(z)|_D = f(z)$$

then F is called the holomorphic extension of f in G.

Theorem 6.1 (Painlevé's theorem) If region Ω is divided into two regions Ω_1, Ω_2 by curve γ , then

$$f \in H(\Omega_1 \cup \Omega_2) \cap C(\Omega) \Longrightarrow f \in H(\Omega)$$

This theorem implies a critical corollary,

$$\begin{cases} f_1(z) \in H(\Omega_1) \cap C(\Omega_1 \cap \gamma) \\ f_1|_{\gamma} = f_2|_{\gamma} \end{cases} \Longrightarrow F(z) \in H(\Omega)$$

where $\Omega = \Omega_1 \cup \Omega_2 \cup \gamma$, and

$$F(z) = \begin{cases} f_1(z), & z \in \Omega_1 \cup \gamma \\ f_2(z), & z \in \Omega_2 \end{cases}$$
(4)

Theorem 6.2 (Schwarz's symmetry theorem) Let D be symmetric about real axis, f satisfies

- 1. f is holomorphic in $D \cap \{z \in \mathbb{C} | Im(z) > 0\}$
- 2. f is continuous in $D \cap \{z \in \mathbb{C} | Im(z) \ge 0\}$
- 3. f is real-valued in $D \cap \{z \in \mathbb{C} | Im(z) = 0\}$

then

$$F(z) = \begin{cases} f(z), & z \in D \cap \{z \in \mathbb{C} | Im(z) \ge 0\} \\ \overline{f(\overline{z})}, & z \in D \cap \{z \in \mathbb{C} | Im(z) < 0\} \end{cases}$$
(5)

is the holomorphic extension of f in D.

We can promote the "axis of symmetry" of the theorem from real axis into arbitrary general circles.

Theorem 6.3 Suppose

- 1. Ω and Ω' are symmetric about circle $S = \{z | |z| = r\}$
- 2. f(z) is holomorphic in Ω
- 3. f(S) is an arc Γ
- 4. The center of Γ , $b \notin f(\Omega)$

then f(z) can be holomorphically extended into $\Omega \cup S \cup \Omega'$.

6.2 Holomorphic Extension of Power Series

Definition 6.2 (Regular point and singular point) Abstract a power series \sim

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

with a convergence radius R. It is holomorphic in $D = \{z | |z| < R\}$

 z_0 is a regular point of f(z), if for $z_0 \in \partial D$, there exists a neighborhood $B_{\delta}(z_0)$ and holomorphic function g(z) in it, s.t

$$f(z) = g(z), \ \forall z \in D \cap B_{\delta}(z_0)$$

 z_0 is a singular point of f(z), if $z_0 \in \partial D$ is not a regular point.

If
$$f \in H(D_1), g \in H(D_2), D_1 \cap D_2 \neq \emptyset$$
, and $f_{D_1 \cap D_2} = g_{D_1 \cap D_2}$, we denote
 $(f, D_1) \sim (g, D_2)$

Theorem 6.4 (Existence of singular point) There is at least 1 singular point on the convergence circle of a power series.

Theorem 6.5 (Determine type of points) To identify the regular and singular points of power series of f(z), we have following theorems.

- 1. if $\lim_{z \to z_0} |f(z)| = +\infty$, z_0 is a singular point
- 2. f(z) and f'(z) have identical regular and singular points on |z| = R
- 3. There is no necessary connection between regular/singular points and convergent/diverging points

There are 4 typical examples for item 3.

	$convergent \ point$	diverging point
regular point	$z = 1$ of $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{z^n}{n}$	$z = -1$ of $\sum_{n=0}^{\infty} z^n$
singular point	$z = 1 \ of \sum_{n=0}^{\infty} \frac{z^n}{n(n-1)}$	$z = 1$ of $\sum_{n=0}^{\infty} z^n$

Theorem 6.6 Under the condition of

$$\lim_{z \to z_0} |f(z)| \neq \infty$$

we pick a point z'_0 on the segment between O and z_0 and suppose that ρ is the convergence radius of

$$f(z) = \sum_{n=0}^{\infty} \frac{f(n)(z'_0)}{n!} (z - z'_0)^n$$

Apparently, $\rho \ge R - |z'_0|$. Moreover, z_0 is a regular point if $\rho > R - |z'_0|$, z_0 is a singular point if $\rho = R - |z'_0|$.

7 RIEMANN CONFORMAL MAPPING

7.1 Regular Family

Theorem 7.1 (Hurwitz's theorem) If

- 1. $f_n(z) \in H(D)$ internally closed uniformly converge to f(z), f(z) is nonzero
- 2. Closed curve γ doesn't pass zeros of f(z)

there exists N, s.t. $f_n(z)$ has as many zeros as f(z) in γ when n > N.

Theorem 7.2 If

1. $f_n(z) \in H(D)$ is univalent

2. $f_n(z)$ internally closed uniformly converge to f(z), f(z) is nonconstant

then f(z) is univalent and holomorphic in D.

Definition 7.1 (Internally closed uniform boundedness) A family of functions \mathcal{F} in Ω , is internally closed uniformly bounded, if $\forall K \subset \Omega$, $\exists M(K) > 0$, s.t. $|f(z)| \leq M(K), \forall f \in \mathcal{F}$, where K is compact.

Definition 7.2 (Internally closed equicontinuity) A family of functions \mathcal{F} in Ω , is equicontinuous, if $\forall K \subset \Omega, \forall \varepsilon > 0, \exists \delta(\varepsilon, K) > 0, s.t. |f(z_1) - f(z_2)| < \varepsilon, \forall f \in \mathcal{F}$ as long as $|z_1 - z_2| < \delta$ where K is compact.

Theorem 7.3 (Arzela-Ascoli lemma) For compact set $K \subset \mathbb{C}$, if $\{f_n\}$ is uniformly bounded and equicontinuous in K, there exists a subsequence of $\{f_n\}$ which uniformly converges to continuous function f.

Theorem 7.4 (Montel's theorem) A family of internally closed uniformly bounded holomorphic functions \mathcal{F} in D has a subsequence which internally closed uniformly converges in D.

Definition 7.3 (Regular family) A family of functions is call a regular family if an arbitrary sequence of function in the family has an internally closed uniformly convergent subsequence.

7.2 Riemann Mapping Theorem

Theorem 7.5 (Riemann mapping theorem) A simply connected region $\Omega \subset \mathbb{C}$ is holomorphically isomorphic to \mathbb{D}

Theorem 7.6 (Reinforced Riemann mapping theorem) For a simply connected region $\Omega \subset \mathbb{C}$, there exists a unique holomorphic bijection $F : \Omega \longrightarrow \mathbb{D}$, s.t $F(z_0) = 0, F'(z_0) > 0$

For a simply connected U and $f \in H(U)$, f(U) is not necessarily simply connected. A counter-example is

$$f: \mathbb{H} \longrightarrow \mathbb{D} \setminus \{0\}, z \mapsto e^{2\pi \mathrm{i} \, z} \tag{6}$$

7.3 Boundary Correspondence

Theorem 7.7 (Theorem of boundary correspondence) Abstract conformal function $F : \mathbb{D} \longrightarrow P$, P is an open polygon, we have

1. F can be continuously extended into a bijection from $\overline{\mathbb{D}}$ to $\overline{\mathbb{P}}$

2. F is a bijection from $\partial \mathbb{D}$ to ∂P

Two counter-example of last theorem are

- 1. For $\Omega = ((0,1) \times (0,1)) \setminus (\bigcup_{n=2}^{\infty} \frac{1}{n} \times (0,\frac{1}{2}])$, there is no continuous curve connecting $z \in \Omega$ and $(0,\frac{1}{4})$
- 2. For $\mathbb{D}\setminus\{x|0 \le x < 1\}$ and different *n*, there is no continuous curve connecting $z_n = (\frac{1}{2}, (-1)^n \frac{1}{n})$

Theorem 7.8 Abstract a simple closed curve $\gamma \subset D$, the region surrounded by γ is D_1 . If $f \in H(D)$ map γ into a simple closed curve Γ univalently, then f is univalent in D_1 , and maps D_1 into the region surrounded by Γ , positive direction of γ into that of Γ .

7.4 Conformal Mapping of Polygons

Theorem 7.9 $f(z) = z^{\alpha}, 0 < \alpha < 2$ maps \mathbb{H} into an angular region and can be continuously extended to the boundary.

Theorem 7.10 A single valued branch of function $f(z) = \int_0^z \frac{d\xi}{\sqrt{1-\xi^2}}$ maps \mathbb{H} into $\{z|\frac{\pi}{2} < Re(z) < \frac{\pi}{2}, Im(z) > 0\}$

Theorem 7.11 Let P be a polygon. F is a conformal function from \mathbb{H} to P if and only if F has the form

$$F(z) = c_1 \int_0^z \frac{\mathrm{d}\xi}{(\xi - A_1)^{\beta_1} \cdots (\xi - A_n)^{\beta_n}} + c_2$$

8 FOURIER TRANSFORM

9 ENTIRE FUNCTIONS

10 GAMMA AND ZETA FUNCTION