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APPENDIX TO CHAPTER b:

When can R” be replaced by ‘‘metric space’?

by R. Gulliver

In this book we have concentrated much of our attention on concrete metric
spaces, especially R®. The question naturally arises, how general are the
results we have obtained? In many exercises we have already asked .the
reader to verify that some results hold in general metric spaces (see for
example p. 100). In the table below are gathered together some of the im-
portant results, (including some not formally stated as theorems in the text)
and the general contexts in which they are valid are stated. The proofs are,
in almost every case, the same as those given in the text. The reader should
pick out some of these theorems and verify that this generalization is indeed

valid.

Theorem

Valid in
Metric spaces?

Chapter 2

Theorem 1: For all ¢ > 0 and x € R, D(x,g) is open.

Theorem 2: (i) the intersection of.a finite number of
open sets is open; (ii) the union of any collection of
open sets is open.

Theorem T (reverse of Theorem 2 for closed sets).

Theorem 4: A = R" is closed iff all accumulation
points of 4 in R” belong to 4.

Theorem 5: cl(A4) consists of 4 plus all its accumulation
points in R". .

Theorem 6: x € bd(A4) iff every neighborhood of x in
R" contains points of 4 and points of R"\4.

Theorem 7: x, — x iff for all ¢ > 0 there exists N such
that if k > N then ||x, — x| <e.

Theorem 8: x),xe R™ x, — x iff each sequence of
components of x, converges Lo the corresponding
component of x.

Theorem 9: A = R"is closed iff for all sequences {x,],
x, € A which converge in R", the limit is in A4.

Theorem 10: A sequence {x,} in R" converges iff it is
a Cauchy sequence.

Theorem 11: For x,& R": ) x, converges iff for all
¢ > 0 there exists N such thatif k> Nand p 2 0
fhﬁn "xk + xk+] + e + xk,“," < 8-

Yes.
Yes.

Yes.
Yes.
Yes.
Yes.,
Yes.

Meaningless in a general
metric space,

Yes.

= Yes.
<« is the definition of a
complete metric space;

Valid in complete normed
space (= Banach space).
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Valid in
Metric spaces?

Theorem 12: x, e R™ If ' [ x,]| converges in R then
Y x, converges in R".

Theorem 13: (iv) If limit | %44 o /11 %]l exists and is <1
~+ o

then ) x, converges. (Also (v) is valid).

Baire Category Theorem: The intersection of a
countable number of dense open subsets of R" is
dense in R".

Theorem: R" has a countable dense subset.

Chapter 3
Theorem 1: The following are equivalent for 4 < R":
(i) A is closed and bounded.

.(ii) 4 has the Heine-Borel property.
(iii) 4 has the Bolzano-Weierstrass property.

Theorem 2: {F,} a sequence of non-empty compact
subsets of R” with F,,, = F,. Then (° F, is
non-empty.

Theorem 3: If 4 is path-connected then it is connected.

Theorem: If 4 is open = R" and A4 is connected, then
it is path-connected.

Proposition: A a closed subset of A, 4 compact = A4
is compact.

Proposition: 4 a closed subset of R", x ¢ 4 = there
exists y & A with d(x,y) = inf{d(xz)| z € 4}

Chapter 4

Theorem 1: For f: 4 = R", 4 < R", these are equiv-
alent:
(i) fis continuous on 4.
(ii) For each sequence x, — x, x,€ 4, x€ A, there
holds f(x,) — f(x).
(iii) For all open sets U < R™®, £~ }(U) is a relatively
open subset of 4.

(iv) Forallclosed setsK = R", f~!(K)isarelatively
closed subset of 4.

Valid in Banach space.

Valid in Banach space,

Valid in complete metric
space.

This defines a “separable”
metric space; not always
true. However, 4(4,R™)
is separable, for A = R”
compact (prove this using
the Stone-Weierstrass
theorem).

No! However, (ii) and (iii)
are equivalent, and each
implies (i). Il A4 has (ii),
we call it compact.

Yes (using the above defini-
tion of compact).

Yes.
In a normed linear space.

Yes.

Nol

Yes (replace A by one met-
ric space, R" by another
metric space)

(continued)
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Theorem

Valid in
Metric spaces?

Theorem 2: 4 = R” andf: A — R" continuous. Then
(i) K < A is connected, then f (K) is connected.
(i) If K « A is compact, then f(K) is compact.

Theorem 3: A =R, f14A—-R" Bec f(d) =R,
g:B—-Re, If f and g are continuous then
gof: A — RPisalso continuous.

Theorem 4: Sums and scalar products of continuous
functions are again continuous.

Theorem 5: A « R" compact, /: 4 — R continuous.
Then f(A) is bounded and contains its sup and inf.

Theorem 6: 4 = R" connected, /- 4 — R continuous,
For any x, ye 4 and ce R with f(x) < ¢ < f(y),
there exists z € A such that f(z) = c.

Theorem 7 (Heine’s Theorem): 4 < R" compact,

S+ A = R™ continuous, Then f is uniformly con-
tinuous on A.

Chapter 5

Theorem 1: f, — f uniformly, f,, /14 = R" 4 = R
If each f, is continuous then f is continuous.

Theorem 3 (Weierstrass M-test): 4 < Rg,: 4 — R™,
I9illsup < M, and Y M, converges. Then Y g,
converges uniformly,

Theorem §: For A « R", ¥,(A4,R™) is a Banach space.

Theorem 9 (Arzela-Ascoli): 4 = R" compact, B <
%(A,R"™). B is compact iff B is closed, bounded, and
equicontinuous.

Theorem 12 (Stone-Weierstrass): 4 «— R" compact,
B = ¥(4A,R). If B is an algebra which separates
points and if the constant functions are included in
B, then B is dense.

Yes.

Yes.

In a normed space.
Yes.

Yes,

Yes.

Yes..

A may be any metric space;
R™ must be replaced bya
Banach space.

A any metric space; R
must be a Banach space.

A may be any compact
metric space, but R" must
be R™,

A may be any compact
metric space,

Further results on metric spaces:

Theorem: If X is a complete metric space, 4 a closed subset of X, then A is a complete

metric space,

Definition: A metric space X is totally bounded if for all £ > O there exists a finite set

{x, . %} © Xsuchthat X = {J}_, D(x.8).

Theorem: Let X be a metric space. X is compact iff X is complete and totally bounded.





