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Folland. Real Analysis
Exercise 1.5.25
Proof. We only need to consider the case µ(E) = +∞. Let

En = [n, n+ 1) ∩ E, n ∈ Z

thus En is a measurable and µ(En) ≤ 1 < +∞. By previous conclusion, for any
k > 0, there exists a Fσ set Kk,n ⊂ En such that

µ(En\Kk,n) ≤
1

2|n|+k

Take union, we obtain Kk ⊂ E for Fσ set

Kk =
∞⋃

n=−∞

Kk,n

and

µ(E\Kk) ≤
3

2k
.

Therefore, the Fσ set

K =
∞⋃
k=1

Kn ⊃ E

satisfies µ(E\K) = 0. We have proved a measurable set can be interiorly approx-
imated by an Fσ set.

Applying this conclusion, we construct an Fσ set K such that K ⊂ Ec and
µ(Ec\K) = 0. Hence U = Kc is a Gδ set including E, such that µ(U\E) = 0.
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Exercise 1.5.26
Proof. For a measurable set E ⊂ R, we have

µ(E) = inf

{
∞∑
k=1

µ(Ik)

∣∣∣∣∣ Ik = (ak, bk), E ⊂
∞⋃
k=1

Ik

}
.

Hence for any ε > 0, there is a sequence of open interval {Ik} whose union covers
E such that

∞∑
k=1

µ(Ik)−
ε

2
≤ µ(E) ≤

∞∑
k=1

µ(Ik).

On the other hand, the convergence of the series above implies ∃N > 0, such
that

0 <

∞∑
k=N+1

µ(Ik) <
ε

2
.

For a finite union of open intervals

A =
N⋃
k=1

Ik,

we have
µ(E△A) = µ(E\A) + µ(A\E) <

ε

2
+

ε

2
= ε.

Exercise 2.1.2
(1)

Proof. First, we need a conclusion that f : X → R is measurable if f is measurable
on f−1(R) and f−1(±∞) ∈ M.

For E ∈ BR, f−1(E) is measurable if E ∈ MR. Otherwise, we without loss of
generality assume E = A ∪ {+∞} where A ∈ BR, then

f−1(E) = f−1(A) ∪ f−1{+∞} ∈ M.

Back to the original problem, we have
(fg)−1{+∞} =

(
f−1{+∞} ∩ g−1(0,+∞]

)
∪
(
f−1(0,+∞] ∩ g−1{+∞}

)
∪
(
f−1{−∞} ∩ g−1[−∞, 0)

)
∪
(
f−1[−∞, 0) ∩ g−1{−∞}

)
∈ M.

Similarly, we have (fg)−1{−∞} ∈ M. As we know, fg is measurable on (fg)−1(R)
since f and g are respectively measurable on f−1(R) and g−1(R). According to
the conclusion above, fg is measurable on X.

2



(2)

Proof. If a = ±∞, we without loss of generality assume a = +∞. In that case,
f + g is obviously measurable on h−1(R). On the other hand, we have

h−1{+∞} =
(
f−1{+∞} ∩ g−1(R)

)
∪
(
f−1(R) ∩ g−1{+∞}

)
∪
(
f−1{+∞} ∩ g−1{−∞}

)
∪
(
f−1{−∞} ∩ g−1{+∞}

)
∈ M,

h−1{−∞} =
(
f−1{−∞} ∩ g−1(R)

)
∪
(
f−1(R) ∩ g−1{−∞}

)
∈ M.

If a ∈ R, we can similarly show that h−1{±∞} ∈ M. Let E ∈ R excluding a,
then h−1(E) is obviously measurable. Otherwise, we have

h−1(E) = (f + g)−1(E\{a}) ∪ (f + g)−1{a}
∪
(
f−1{+∞} ∩ g−1{−∞}

)
∪
(
f−1{−∞} ∩ g−1{+∞}

)
∈ M.

In summary, h is always measurable.

Exercise 2.1.5
Proof. Fix an arbitrary Borel subset E ⊂ R. If f is measurable on both A and B,
then

f−1(E) ∩ (A ∪ B) = (f−1(E) ∩ A) ∪ (f−1(E) ∩ B) ∈ M.

If f is measurable on both A ∪ B, then

f−1(E) ∩ A = f−1(E) ∩ (A ∪ B) ∩ A ∈ M

since A ∈ M. Similarly, we have B ∈ M.

Exercise 2.3.21
Proof. =⇒:

It is obvious that ∣∣∣∣∫ |fn| −
∫

|f |
∣∣∣∣ ≤ ∫

|fn − f | → 0.

⇐=:
Let {gn} = {| fn | + | f |} be a sequence of L1 functions that converge to

2|f | in L1. The triangular inequality implies | fn − f |≤ gn, thus by generalized
dominant convergence theorem, we have

lim
n→∞

∫
| fn − f |=

∫
lim
n→∞

| fn − f |= 0

since fn → f almost everywhere.
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Exercise 2.5.49
Proof. For a null set E ∈ M×N , we have

0 = µ× ν(E) =

∫
ν(Ex) dµ(x) =

∫
µ(Ey) dν(y),

which implies ν(Ex) = µ(Ey) = 0 for almost every x and y.
For the λ-null set

A = {(x, y) ∈ R2 | f(x, y) ̸= 0},
there exists an E ∈ M×N including E0 such that µ× ν(E) = 0. Therefore,∫

|fx| dν(y) =
∫

χAx |fx| dν(y) = 0,∫
|f y| dµ(x) =

∫
χAy |f y| dµ(x) = 0.

Back to the proof of the theorem 2.39, suppose f ∈ L+(λ) ∪ L1(λ). According
to Proposition 2.12, there exists a µ × ν-measurable function g such that f = g,
λ-almost everywhere. Since gx is ν-measurable and gy is µ-measurable.

Define a function h = f − g that equals 0 almost everywhere, then the latter
lemma implies that hx is ν-measurable for almost every x while hy is µ-measurable
for almost every y.

Particularly when f ∈ L1(λ), we have hx ∈ L1(ν) for almost every x. By
Fubini’s theorem, gx ∈ L1(ν) for almost every x, thus fx ∈ L1(ν) for almost every
x. The counterpart for f y is still correct. Moreover, we have almost everywhere∫

hx dν(y) = 0 =⇒
∫

gx dν(y) =
∫

fx dν(y),∫
hy dµ(x) = 0 =⇒

∫
gy dµ(x) =

∫
f y dν(x).

If f ∈ L+(λ), then g ∈ L+(µ× ν), thus Tonelli’s theorem indicates functions

x →
∫

gx dν(y) =
∫

fx dν(y),

y →
∫

gy dµ(x) =
∫

f y dν(x)

are both measurable. Correspondingly, if f ∈ L1(λ), then g ∈ L1(µ × ν), thus
Fubini’s theorem indicates the two functions above are both integrable. An ulti-
mately application of Fubini-Tonelli’s theorem leads to the identity∫

f dλ =

∫ (∫
f dµ

)
dν =

∫ (∫
f dν

)
dµ.
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