Solutions to Homework 04

Yu Junao

October 9, 2024

Folland. *Real Analysis*

Exercise 1.5.25

Proof. We only need to consider the case $\mu(E) = +\infty$. Let

$$
E_n = [n, n+1) \cap E, n \in \mathbb{Z}
$$

thus E_n is a measurable and $\mu(E_n) \leq 1 < +\infty$. By previous conclusion, for any $k > 0$, there exists a F_{σ} set $K_{k,n} \subset E_n$ such that

$$
\mu(E_n \backslash K_{k,n}) \le \frac{1}{2^{|n|+k}}
$$

Take union, we obtain $K_k \subset E$ for F_{σ} set

$$
K_k = \bigcup_{n=-\infty}^{\infty} K_{k,n}
$$

and

$$
\mu(E\backslash K_k)\leq \frac{3}{2^k}.
$$

Therefore, the F_{σ} set

$$
K = \bigcup_{k=1}^{\infty} K_n \supset E
$$

satisfies $\mu(E\backslash K) = 0$. We have proved a measurable set can be interiorly approximated by an F_{σ} set.

Applying this conclusion, we construct an F_{σ} set *K* such that $K \subset E^{c}$ and $\mu(E^{c} \setminus K) = 0$. Hence $U = K^{c}$ is a G_{δ} set including *E*, such that $\mu(U \setminus E) = 0$.

Exercise 1.5.26

Proof. For a measurable set $E \subset \mathbb{R}$, we have

$$
\mu(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(I_k) \middle| I_k = (a_k, b_k), E \subset \bigcup_{k=1}^{\infty} I_k \right\}.
$$

Hence for any $\varepsilon > 0$, there is a sequence of open interval $\{I_k\}$ whose union covers *E* such that

$$
\sum_{k=1}^{\infty} \mu(I_k) - \frac{\varepsilon}{2} \le \mu(E) \le \sum_{k=1}^{\infty} \mu(I_k).
$$

On the other hand, the convergence of the series above implies $\exists N > 0$, such that

$$
0 < \sum_{k=N+1}^{\infty} \mu(I_k) < \frac{\varepsilon}{2}.
$$

For a finite union of open intervals

$$
A = \bigcup_{k=1}^{N} I_k,
$$

we have

$$
\mu(E\triangle A) = \mu(E\setminus A) + \mu(A\setminus E) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

Exercise 2.1.2

(1)

Proof. First, we need a conclusion that $f: X \to \overline{\mathbb{R}}$ is measurable if *f* is measurable on $f^{-1}(\mathbb{R})$ and $f^{-1}(\pm \infty) \in \mathcal{M}$.

For $E \in \mathcal{B}_{\overline{R}}$, $f^{-1}(E)$ is measurable if $E \in \mathcal{M}_{\mathbb{R}}$. Otherwise, we without loss of generality assume $E = A \cup \{+\infty\}$ where $A \in \mathcal{B}_{\mathbb{R}}$, then

$$
f^{-1}(E) = f^{-1}(A) \cup f^{-1}\{+\infty\} \in \mathcal{M}.
$$

Back to the original problem, we have

$$
(fg)^{-1}\{+\infty\} = (f^{-1}\{+\infty\} \cap g^{-1}(0,+\infty]) \cup (f^{-1}(0,+\infty] \cap g^{-1}\{+\infty\})
$$

$$
\cup (f^{-1}\{-\infty\} \cap g^{-1}[-\infty,0)) \cup (f^{-1}[-\infty,0) \cap g^{-1}\{-\infty\}) \in \mathcal{M}.
$$

Similarly, we have $(fg)^{-1}\{-\infty\} \in \mathcal{M}$. As we know, fg is measurable on $(fg)^{-1}(\mathbb{R})$ since *f* and *g* are respectively measurable on $f^{-1}(\mathbb{R})$ and $g^{-1}(\mathbb{R})$. According to the conclusion above, *fg* is measurable on *X*. \Box

 \Box

(2)

Proof. If $a = \pm \infty$, we without loss of generality assume $a = +\infty$. In that case, *f* + *g* is obviously measurable on $h^{-1}(\mathbb{R})$. On the other hand, we have

$$
h^{-1}\{+\infty\} = (f^{-1}\{+\infty\} \cap g^{-1}(\mathbb{R})) \cup (f^{-1}(\mathbb{R}) \cap g^{-1}\{+\infty\})
$$

$$
\cup (f^{-1}\{+\infty\} \cap g^{-1}\{-\infty\}) \cup (f^{-1}\{-\infty\} \cap g^{-1}\{+\infty\}) \in \mathcal{M},
$$

$$
h^{-1}\{-\infty\} = (f^{-1}\{-\infty\} \cap g^{-1}(\mathbb{R})) \cup (f^{-1}(\mathbb{R}) \cap g^{-1}\{-\infty\}) \in \mathcal{M}.
$$

If $a \in \mathbb{R}$, we can similarly show that $h^{-1}\{\pm \infty\} \in \mathcal{M}$. Let $E \in \mathbb{R}$ excluding a , then $h^{-1}(E)$ is obviously measurable. Otherwise, we have

$$
h^{-1}(E) = (f+g)^{-1}(E\setminus\{a\}) \cup (f+g)^{-1}\{a\}
$$

$$
\cup (f^{-1}\{\pm \infty\} \cap g^{-1}\{-\infty\}) \cup (f^{-1}\{-\infty\} \cap g^{-1}\{\pm \infty\}) \in \mathcal{M}.
$$

In summary, *h* is always measurable.

Exercise 2.1.5

Proof. Fix an arbitrary Borel subset $E \subset \mathbb{R}$. If f is measurable on both A and B, then

$$
f^{-1}(E) \cap (A \cup B) = (f^{-1}(E) \cap A) \cup (f^{-1}(E) \cap B) \in \mathcal{M}.
$$

If *f* is measurable on both $A \cup B$, then

$$
f^{-1}(E) \cap A = f^{-1}(E) \cap (A \cup B) \cap A \in \mathcal{M}
$$

since $A \in \mathcal{M}$. Similarly, we have $B \in \mathcal{M}$.

Exercise 2.3.21

Proof. =*⇒*:

It is obvious that

$$
\left| \int |f_n| - \int |f| \right| \le \int |f_n - f| \to 0.
$$

⇐=:

Let ${g_n} = {\vert f_n \vert + \vert f \vert}$ be a sequence of L^1 functions that converge to 2|*f*| in *L*¹. The triangular inequality implies $|f_n - f| \leq g_n$, thus by generalized dominant convergence theorem, we have

$$
\lim_{n \to \infty} \int |f_n - f| = \int \lim_{n \to \infty} |f_n - f| = 0
$$

since $f_n \to f$ almost everywhere.

 \Box

$$
\qquad \qquad \Box
$$

 \Box

Exercise 2.5.49

Proof. For a null set $E \in \mathcal{M} \times \mathcal{N}$, we have

$$
0 = \mu \times \nu(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y),
$$

which implies $\nu(E_x) = \mu(E^y) = 0$ for almost every *x* and *y*.

For the *λ*-null set

$$
A = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) \neq 0\},\
$$

there exists an $E \in \mathcal{M} \times \mathcal{N}$ including E_0 such that $\mu \times \nu(E) = 0$. Therefore,

$$
\int |f_x| d\nu(y) = \int \chi_{A_x} |f_x| d\nu(y) = 0,
$$

$$
\int |f^y| d\mu(x) = \int \chi_{A^y} |f^y| d\mu(x) = 0.
$$

Back to the proof of the theorem 2.39, suppose $f \in L^+(\lambda) \cup L^1(\lambda)$. According to Proposition 2.12, there exists a $\mu \times \nu$ -measurable function g such that $f = g$, *λ*-almost everywhere. Since g_x is *ν*-measurable and g^y is *μ*-measurable.

Define a function $h = f - g$ that equals 0 almost everywhere, then the latter lemma implies that h_x is *v*-measurable for almost every *x* while h^y is *µ*-measurable for almost every *y*.

Particularly when $f \in L^1(\lambda)$, we have $h_x \in L^1(\nu)$ for almost every *x*. By Fubini's theorem, $g_x \in L^1(\nu)$ for almost every *x*, thus $f_x \in L^1(\nu)$ for almost every x. The counterpart for f^y is still correct. Moreover, we have almost everywhere

$$
\int h_x \, d\nu(y) = 0 \Longrightarrow \int g_x \, d\nu(y) = \int f_x \, d\nu(y),
$$

$$
\int h^y \, d\mu(x) = 0 \Longrightarrow \int g^y \, d\mu(x) = \int f^y \, d\nu(x).
$$

If $f \in L^+(\lambda)$, then $g \in L^+(\mu \times \nu)$, thus Tonelli's theorem indicates functions

$$
x \to \int g_x \, d\nu(y) = \int f_x \, d\nu(y),
$$

$$
y \to \int g^y \, d\mu(x) = \int f^y \, d\nu(x)
$$

are both measurable. Correspondingly, if $f \in L^1(\lambda)$, then $g \in L^1(\mu \times \nu)$, thus Fubini's theorem indicates the two functions above are both integrable. An ultimately application of Fubini-Tonelli's theorem leads to the identity

$$
\int f \, d\lambda = \int \left(\int f \, d\mu \right) d\nu = \int \left(\int f \, d\nu \right) d\mu.
$$