Solutions to Homework 04

Yu Junao

October 9, 2024

Folland. Real Analysis

Exercise 1.5.25

Proof. We only need to consider the case $\mu(E) = +\infty$. Let

$$E_n = [n, n+1) \cap E, \ n \in \mathbb{Z}$$

thus E_n is a measurable and $\mu(E_n) \leq 1 < +\infty$. By previous conclusion, for any k > 0, there exists a F_{σ} set $K_{k,n} \subset E_n$ such that

$$\mu(E_n \setminus K_{k,n}) \le \frac{1}{2^{|n|+k}}$$

Take union, we obtain $K_k \subset E$ for F_σ set

$$K_k = \bigcup_{n = -\infty}^{\infty} K_{k,n}$$

and

$$\mu(E \backslash K_k) \le \frac{3}{2^k}.$$

Therefore, the F_{σ} set

$$K = \bigcup_{k=1}^{\infty} K_n \supset E$$

satisfies $\mu(E \setminus K) = 0$. We have proved a measurable set can be interiorly approximated by an F_{σ} set.

Applying this conclusion, we construct an F_{σ} set K such that $K \subset E^c$ and $\mu(E^c \setminus K) = 0$. Hence $U = K^c$ is a G_{δ} set including E, such that $\mu(U \setminus E) = 0$. \Box

Exercise 1.5.26

Proof. For a measurable set $E \subset \mathbb{R}$, we have

$$\mu(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(I_k) \middle| I_k = (a_k, b_k), E \subset \bigcup_{k=1}^{\infty} I_k \right\}.$$

Hence for any $\varepsilon > 0$, there is a sequence of open interval $\{I_k\}$ whose union covers E such that

$$\sum_{k=1}^{\infty} \mu(I_k) - \frac{\varepsilon}{2} \le \mu(E) \le \sum_{k=1}^{\infty} \mu(I_k).$$

On the other hand, the convergence of the series above implies $\exists N > 0$, such that

$$0 < \sum_{k=N+1}^{\infty} \mu(I_k) < \frac{\varepsilon}{2}.$$

For a finite union of open intervals

$$A = \bigcup_{k=1}^{N} I_k,$$

we have

$$\mu(E \triangle A) = \mu(E \backslash A) + \mu(A \backslash E) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Exercise 2.1.2

(1)

Proof. First, we need a conclusion that $f: X \to \overline{\mathbb{R}}$ is measurable if f is measurable on $f^{-1}(\mathbb{R})$ and $f^{-1}(\pm \infty) \in \mathcal{M}$.

For $E \in \mathcal{B}_{\mathbb{R}}$, $f^{-1}(E)$ is measurable if $E \in \mathcal{M}_{\mathbb{R}}$. Otherwise, we without loss of generality assume $E = A \cup \{+\infty\}$ where $A \in \mathcal{B}_{\mathbb{R}}$, then

$$f^{-1}(E) = f^{-1}(A) \cup f^{-1}\{+\infty\} \in \mathcal{M}.$$

Back to the original problem, we have

$$(fg)^{-1}\{+\infty\} = (f^{-1}\{+\infty\} \cap g^{-1}(0,+\infty]) \cup (f^{-1}(0,+\infty] \cap g^{-1}\{+\infty\}) \\ \cup (f^{-1}\{-\infty\} \cap g^{-1}[-\infty,0)) \cup (f^{-1}[-\infty,0) \cap g^{-1}\{-\infty\}) \in \mathcal{M}.$$

Similarly, we have $(fg)^{-1}\{-\infty\} \in \mathcal{M}$. As we know, fg is measurable on $(fg)^{-1}(\mathbb{R})$ since f and g are respectively measurable on $f^{-1}(\mathbb{R})$ and $g^{-1}(\mathbb{R})$. According to the conclusion above, fg is measurable on X.

Proof. If $a = \pm \infty$, we without loss of generality assume $a = +\infty$. In that case, f + g is obviously measurable on $h^{-1}(\mathbb{R})$. On the other hand, we have

$$h^{-1}\{+\infty\} = (f^{-1}\{+\infty\} \cap g^{-1}(\mathbb{R})) \cup (f^{-1}(\mathbb{R}) \cap g^{-1}\{+\infty\}) \\ \cup (f^{-1}\{+\infty\} \cap g^{-1}\{-\infty\}) \cup (f^{-1}\{-\infty\} \cap g^{-1}\{+\infty\}) \in \mathcal{M}, \\ h^{-1}\{-\infty\} = (f^{-1}\{-\infty\} \cap g^{-1}(\mathbb{R})) \cup (f^{-1}(\mathbb{R}) \cap g^{-1}\{-\infty\}) \in \mathcal{M}.$$

If $a \in \mathbb{R}$, we can similarly show that $h^{-1}\{\pm \infty\} \in \mathcal{M}$. Let $E \in \mathbb{R}$ excluding a, then $h^{-1}(E)$ is obviously measurable. Otherwise, we have

$$h^{-1}(E) = (f+g)^{-1}(E \setminus \{a\}) \cup (f+g)^{-1}\{a\}$$
$$\cup (f^{-1}\{+\infty\} \cap g^{-1}\{-\infty\}) \cup (f^{-1}\{-\infty\} \cap g^{-1}\{+\infty\}) \in \mathcal{M}.$$

In summary, h is always measurable.

Exercise 2.1.5

Proof. Fix an arbitrary Borel subset $E \subset \mathbb{R}$. If f is measurable on both A and B, then

$$f^{-1}(E) \cap (A \cup B) = (f^{-1}(E) \cap A) \cup (f^{-1}(E) \cap B) \in \mathcal{M}$$

If f is measurable on both $A \cup B$, then

$$f^{-1}(E) \cap A = f^{-1}(E) \cap (A \cup B) \cap A \in \mathcal{M}$$

since $A \in \mathcal{M}$. Similarly, we have $B \in \mathcal{M}$.

Exercise 2.3.21

Proof. \Longrightarrow :

⇐=:

It is obvious that

$$\left|\int |f_n| - \int |f|\right| \le \int |f_n - f| \to 0.$$

Let $\{g_n\} = \{|f_n| + |f|\}$ be a sequence of L^1 functions that converge to 2|f| in L^1 . The triangular inequality implies $|f_n - f| \leq g_n$, thus by generalized dominant convergence theorem, we have

$$\lim_{n \to \infty} \int |f_n - f| = \int \lim_{n \to \infty} |f_n - f| = 0$$

since $f_n \to f$ almost everywhere.

1	0	1
1	•,	1
١.	4	

Exercise 2.5.49

Proof. For a null set $E \in \mathcal{M} \times \mathcal{N}$, we have

$$0 = \mu \times \nu(E) = \int \nu(E_x) \,\mathrm{d}\mu(x) = \int \mu(E^y) \,\mathrm{d}\nu(y),$$

which implies $\nu(E_x) = \mu(E^y) = 0$ for almost every x and y.

For the λ -null set

$$A = \{ (x, y) \in \mathbb{R}^2 \mid f(x, y) \neq 0 \},\$$

there exists an $E \in \mathcal{M} \times \mathcal{N}$ including E_0 such that $\mu \times \nu(E) = 0$. Therefore,

$$\int |f_x| \,\mathrm{d}\nu(y) = \int \chi_{A_x} |f_x| \,\mathrm{d}\nu(y) = 0,$$
$$\int |f^y| \,\mathrm{d}\mu(x) = \int \chi_{A^y} |f^y| \,\mathrm{d}\mu(x) = 0.$$

Back to the proof of the theorem 2.39, suppose $f \in L^+(\lambda) \cup L^1(\lambda)$. According to Proposition 2.12, there exists a $\mu \times \nu$ -measurable function g such that f = g, λ -almost everywhere. Since g_x is ν -measurable and g^y is μ -measurable.

Define a function h = f - g that equals 0 almost everywhere, then the latter lemma implies that h_x is ν -measurable for almost every x while h^y is μ -measurable for almost every y.

Particularly when $f \in L^1(\lambda)$, we have $h_x \in L^1(\nu)$ for almost every x. By Fubini's theorem, $g_x \in L^1(\nu)$ for almost every x, thus $f_x \in L^1(\nu)$ for almost every x. The counterpart for f^y is still correct. Moreover, we have almost everywhere

$$\int h_x \, \mathrm{d}\nu(y) = 0 \Longrightarrow \int g_x \, \mathrm{d}\nu(y) = \int f_x \, \mathrm{d}\nu(y),$$
$$\int h^y \, \mathrm{d}\mu(x) = 0 \Longrightarrow \int g^y \, \mathrm{d}\mu(x) = \int f^y \, \mathrm{d}\nu(x).$$

If $f \in L^+(\lambda)$, then $g \in L^+(\mu \times \nu)$, thus Tonelli's theorem indicates functions

$$x \to \int g_x \,\mathrm{d}\nu(y) = \int f_x \,\mathrm{d}\nu(y),$$
$$y \to \int g^y \,\mathrm{d}\mu(x) = \int f^y \,\mathrm{d}\nu(x)$$

are both measurable. Correspondingly, if $f \in L^1(\lambda)$, then $g \in L^1(\mu \times \nu)$, thus Fubini's theorem indicates the two functions above are both integrable. An ultimately application of Fubini-Tonelli's theorem leads to the identity

$$\int f \, \mathrm{d}\lambda = \int \left(\int f \, \mathrm{d}\mu \right) \mathrm{d}\nu = \int \left(\int f \, \mathrm{d}\nu \right) \mathrm{d}\mu.$$