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Folland. Real Analysis

Exercise 9.2.27

(1)
Proof. Abstract

which belongs to L' + L? when % < o < n. Therefore, hg is well defined. By the
definition of Gamma function, we have
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it is easy to verify
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are holomorphic functions with respect to o that coincide on [§,n] C R. By the

uniqueness theorem, they coincide everywhere in the domain of definition. O
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Proof. Let ¢ be an arbitrary Schwarz function, then
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Therefore, R, is a tempered distribution. Note that (1) implies

(R ) = (R ) = g k(a8 = €7,

&
205 T (
hence

Ro = (2r)€))™".

(3)

Proof. Let ¢ be an arbitrary Schwarz function, then
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Exercise 9.3.30

Proof. It is obvious that the proposition is correct for &« = 0 and a = e, where
1<k <n.
Assume
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for every a such that |a] < m — 1. For |a] = m > 2, without loss of generality
assume o > 0 and @ = o — ie;.
If oy =1, then
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If oy > 2, then
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For even oy, we have
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while for odd a7, the same inequality is derived from the case a; = 1.
In summary, we obtain
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Exercise 9.3.36
Proof. Note that
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This bound is independent of j.
Assume there is a convergent subsequence. Without loss of generality suppose
{152, itself converges to ¢o in H°. By definition,
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The inner product
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tends to 0 as j — oo, thus

loi — @ollFs = 2|3,

which implies ¢ = 0 since ||¢; — o3« is arbitrarily small, a contradiction!



