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Exercise 9.1.13
(1)

Proof. Let n be the standard mollifier and n.(z) = =n(%). Since F xn. € C*, we
have

0=0,F*n.=0;(Fxn.) = Fxn.=C..
For f € C2°, we have
(F, f) = T, fxone) = lm(F o« ., f) = lim{C, f),

which implies C. converges to some constant C'. Let € tend to 0, then F' = C. [

Exercise 9.1.15
(1)
Proof. Let
GE($7 t) = G(ZE, t)X(€,+oo)~

Since G¢ tends to G € L} pointwise, we conclude that G* — G in D'.
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as € — 0, which implies
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(2)

Proof. By dominated convergence theorem,
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= @(x,1).

Exercise 9.2.19

(1)
Proof. For p € S,
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since one can similarly verify by truncation that the principal value integral is
bounded by semi-norms of . [



(2)
Proof. In the sense of weak * topology, (1) implies
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We only need to compute the distributional limit of

In fact, dominated convergence theorem implies
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(3)
Proof. By definition,
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which implies
(sgn)" = (mi) "' Fy
in the sense of distribution. [l

(4)

Proof. We have proved this conclusion in a previous exercise regarding Hilbert
transform. N



(5)
Proof. For

we have

For

we have

X = X(0400) = lme™y,
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