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Folland. Real Analysis
Exercise 8.1.1
Proof. We only prove the first identity as similar approaches are applicable for the
second one.

For |α| = 1, without loss of generality assume α = (1, 0, · · · , 0), then

∂α
(
xβf

)
= xβ∂αf + β1x

β1−1
1 xβ2

2 · · · xβn
n f = xβ∂αf +

∑
γ,δ

cγδx
δ∂γf

where

cγδ =

{
β1, β1 ≥ 0, γ = 0, δ = (β1 − 1, β2, · · · , βn),

0, else.

Assume the conclusion is correct for |α| = k − 1. Assume |α| = k and α1 ≥ 1,
then for α′ = (α1 − 1, α2, · · · , αn) we have

∂α
(
xβf

)
= ∂1∂

α′ (
xβf

)
= ∂1

(
xβ∂αf +

∑
γ,δ

c′γδx
δ∂γf

)
= xβ∂αf + β1x

β′
f +

∑
γ,δ

c′γδx
δ∂γf

= xβ∂αf +
∑
γ,δ

cγδx
δ∂(γ1+1,γ2,··· ,γn)f.

By the assumption of induction, the conclusion is correct for every k.
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Exercise 8.1.2
(1)

Proof. We shall prove by induction on n.
As is known, the conclusion is correct for n = 1, 2. Assume it is correct for

n− 1, then for x′ = (x1, · · · , xn−1) we have

(x1 + · · ·+ xn)
k =

k∑
j=0

k!

j!(k − j)!
(x1 + · · ·+ xn−1)

jxk−j
n

=
k∑

j=0

k!

j!(k − j)!
xk−j
n

∑
|β|=j

j!

β!
x′β


=

k∑
j=0

∑
|β|=j

k!

(k − j)!β!
x′βxk−j

n

=
∑
|α|=k

k!

α!
x′βxk−j

n

since |α| = |β|+ k − j = k.
By the assumption of induction, the conclusion is correct for every n.

(2)

Proof. Direct computation implies

(x+ y)α =
n∏

i=1

(xi + yi)
αi

=
n∏

i=1

αi∑
j=1

αi!

j!(αi − j)!
xj
iy

αi−j
i

=
∑

β+γ=α

n∏
i=1

αi!

βi!γi!
xβi

i y
γi
i

=
∑

β+γ=α

α!

β!γ!
xβyγ

Exercise 8.3.14
Proof. It is easy to check that the inequality is invariant under translation and
scaling, thus we assume a = 0 and b = 1

2
.
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Set

F (x) =

{
f(x), 0 ≤ x ≤ 1

2
,

−f(−x), −1
2
≤ x < 0.

Note F (x) ∈ C1[−1
2
, 1
2
] since

F ′(0) = lim
h→0

F (h)− F (0)

h
= lim

h→0

F (h)

h
= f ′(0),

and we only need to prove∫ 1
2

− 1
2

|F (x)|2 dx ≤ 1

4π2

∫ 1
2

− 1
2

|F ′(x)| dx.

By Parseval’s identity, we have∫ 1
2

− 1
2

|F (x)|2 dx =
+∞∑

n=−∞

|F̂ (n)|2

and ∫ 1
2

− 1
2

|F ′(x)|2 dx =
+∞∑

n=−∞

∣∣∣2nπiF̂ (n)
∣∣∣2 = 4π2

+∞∑
n=−∞

n2|F̂ (n)|2.

Particularly, F̂ (0) = 0 since F is odd, thus the inequality holds, which achieves
equality if and only if F satisfies F̂ (n) = 0 unless n = ±1.

Exercise 8.4.28
(1)

Proof. Consider the partial sum of Poisson kernel. Note that∣∣∣∣∣f(y)
N∑

n=−N

r|n|e2πin(x−y)

∣∣∣∣∣ ≤ |f(x)|
N∑

n=−N

r|n| ≤ 2|f(x)|
∞∑
n=1

rn =
2r

1− r
|f(x)| < +∞

for 0 < r < 1.
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Therefore, dominated convergence theorem implies

(f ∗ Pr)(x) =

∫
f(y)

+∞∑
n=−∞

r|n|e2nπi(x−y) dy

=

∫
lim

N→∞
f(y)

N∑
n=−N

r|n|e2nπi(x−y) dy

= lim
N→∞

∫ N∑
n=−N

f(y)r|n|e2nπi(x−y) dy

= Arf(x).

(2)

Proof. By direct computation,

Pr(x) = 1 +
∞∑
n=1

rn
(
e2nπix + e−2nπix

)
= 1 +

∞∑
n=1

(
re2πix

)n
+

∞∑
n=1

(
re−2πix

)n
= 1 +

re2πix

1− re2πix
+

re−2πix

1− re−2πix

=
1− r2

1 + r2 − 2r cos 2πx
.

Exercise 8.4.32
Proof. =⇒:

Define

g(z) = g(e2πix) = f(x)

for x ∈ T, then g(z) is an analytic function on S1. By the analyticity of exponential
function, g is naturally extended to a holomorphic function on an annulus

A = {z | 1− δ < |z| < 1 + δ}.
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Consider the Laurent expansion at 0

g(z) =
+∞∑

n=−∞

anz
n,

where

an =
1

2πi

∫
S1

g(z)

zn+1
dz

=
1

2πi

∫ 1

0

g(e2πix)e−2nπix dx

=
1

2πi

∫
T
f(x)e−2nπix dx

=
1

2πi
f̂(n)

as a result of residue theorem.
Take z0 ∈ A such that |z0| > 1, then the convergence of Laurent series in A

implies

lim
n→∞

∣∣∣∣ 1

2πi
f̂(n)zn0

∣∣∣∣ = 0 =⇒ lim
n→∞

|f̂(n)||z0|n = 0,

hence there exists N1 > 0 and C1 > 0 such that

|f̂(n)| ≤ C1e
−ε1n, n ≥ N1.

where ε1 = log |z0| > 0.
Take z′0 ∈ A such that |z′0| < 1, and the same argument implies the existence

of N2 > 0 and C2 > 0 such that

|f̂(n)| ≤ C2e
−ε2n, n ≤ −N2.

where ε2 = − log |z′0| > 0.
Let

ε = max{ε1, ε2}

and

C = max

{
C1, C2,max

{
f̂(1−N2)

e1−N2
, · · · , f̂(−1)

e−1
, f̂(0),

f̂(1)

e
, · · · , f̂(N1 − 1)

eN1−1

}}
.

(1)
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then we have

|f̂(n)| ≤ Ce−n

for n ∈ Z.
⇐=:
Consider

Arf(x) = f̂(0) +
∞∑
n=1

rn
(
f̂(n)e2nπix + f̂(−n)e−2nπix

)
= f̂(0) +

∞∑
n=1

rn
(
f̂(n)zn + f̂(−n)z−n

)
.

The inequality yields an uniform boundedness estimate

|Arf(x)| ≤ |f̂(0)|+ C
∞∑
n=1

rne−εn
∣∣e2nπix + e2nπix

∣∣
≤ |f̂(0)|+ 2C

∞∑
n=1

(re−ε)n

≤ |f̂(0)|+ 2Cr

eε − r

≤ |f̂(0)|+ 2C

eε − 1

< +∞

for 0 < r < eε+1
2

, then this Laurent series converges, namely Arf(x) corresponds
to a holomorphic function on S2 for every r ∈ (0, e

ε+1
2

) including r = 1.
Since A1f(x) = f(x), the complex-variable function g(z) define at the start is

holomorphic on S1, resulting in the analyticity of f(x) on T.
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