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Exercise 8.1.1

Proof. We only prove the first identity as similar approaches are applicable for the
second one.
For |a| = 1, without loss of generality assume a = (1,0,---,0), then
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0, else.

Assume the conclusion is correct for |a| = k — 1. Assume |o| = k and oy > 1,
then for o/ = (ag — 1, 2, , v,) we have
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By the assumption of induction, the conclusion is correct for every k. ]



Exercise 8.1.2

(1)

Proof. We shall prove by induction on n.
As is known, the conclusion is correct for n = 1,2. Assume it is correct for

n — 1, then for 2/ = (21, -+ ,z,_1) we have
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since |a| = |B] +k —j = k.
By the assumption of induction, the conclusion is correct for every n. ]
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Proof. Direct computation implies
(w4 y)* = [T+ 9™
i=1
n (073 Oél' i oui
- HZ (o — )] iYi
i=1 j=1 JA\x =)
")
_ i B v
D) | o
B+y=a i=1
al
— B,y
S Dt
Bt+y=a

Exercise 8.3.14

Proof. Tt is easy to check that the inequality is invariant under translation and
scaling, thus we assume a = 0 and b = %
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Set

Plz) = {f(x), 0<as L
—f(=z), —53<2<0
Note F(z) € C*[—1, 1] since
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By Parseval’s identity, we have
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Particularly, F'(0) = 0 since F is odd, thus the inequality holds, which achieves
equality if and only if F' satisfies F'(n) = 0 unless n = +1. O

Exercise 8.4.28
(1)

Proof. Consider the partial sum of Poisson kernel. Note that
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for 0 <r < 1.



Therefore, dominated convergence theorem implies
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Proof. By direct computation,
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Exercise 8.4.32

Proof. =
Define

for z € T, then g(z) is an analytic function on S'. By the analyticity of exponential
function, g is naturally extended to a holomorphic function on an annulus

A={z]|1=-0<|z] <1+d}.



Consider the Laurent expansion at 0
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as a result of residue theorem.
Take zg € A such that |z9| > 1, then the convergence of Laurent series in A
implies

lim
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hence there exists Ny > 0 and C; > 0 such that
|f(n)| <Cie ™", n> Ny

where g1 = log |z9| > 0.
Take 2 € A such that |z)| < 1, and the same argument implies the existence
of Ny > 0 and C5 > 0 such that

[f(n)] < Coe™", n < =N,

where g9 = —log 2| > 0.
Let
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and
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then we have
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The inequality yields an uniform boundedness estimate
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for 0 <r < es; L then this Laurent series converges, namely A, f(z) corresponds
to a holomorphic function on S? for every r € (0, <

5—) including r = 1.
Since A;f(z) = f(x), the complex-variable function g(z) define at the start is
holomorphic on S!, resulting in the analyticity of f(z) on T. O



