Solutions to Homework 06

Yu Junao

October 15, 2024

Folland. *Real Analysis*

Exercise 6.1.7

Proof. By interpolation inequality,

$$
||f||_q \le ||f||_p^{\frac{p}{q}} ||f||_{\infty}^{\frac{q-p}{q}} < +\infty \Longrightarrow f \in L^q.
$$

As an immediate corollary, we have

$$
\overline{\lim}_{q \to \infty} ||f||_q \le ||f||_{\infty}.
$$

On the other hand, consider the level set

$$
A_{\lambda} = \{|f| \ge \lambda\}
$$

for $0 < \lambda < ||f||_{\infty}$. Therefore,

$$
\lambda^{q} \mu(E_{\lambda}) = \int_{E_{\lambda}} \lambda^{q} d\mu \le \int_{E_{\lambda}} |f|^{q} d\mu \le ||f||_{q}^{q}.
$$

For fixed λ ,

$$
||f||_q \geq \lambda \left(\mu(E_\lambda)\right)^{\frac{1}{q}} \Longrightarrow \lim_{q \to \infty} ||f||_q \geq \lambda.
$$

Let λ tend to $||f||_{\infty}$, and

$$
\underline{\lim}_{q \to \infty} ||f||_q \ge ||f||_{\infty} \ge \overline{\lim}_{q \to \infty} ||f||_q.
$$

As a result,

$$
\lim_{q \to \infty} ||f||_q = ||f||_{\infty}.
$$

 \Box

Exercise 6.1.9

Proof. Fix $a \varepsilon > 0$, we have

$$
\mu\{|f_n - f| \ge \varepsilon\} = \frac{1}{\varepsilon^p} \int_{\{|f_n - f|^p \ge \varepsilon^p\}} \varepsilon^p d\mu
$$

$$
= \frac{1}{\varepsilon^p} \int_{\{|f_n - f|^p \ge \varepsilon^p\}} |f_n - f|^p d\mu
$$

$$
\le \frac{1}{\varepsilon^p} \int_X |f_n - f|^p d\mu
$$

$$
\to 0, \quad n \to \infty.
$$

Conversely, assume $\{f_n\}_{n=1}^{\infty}$ does not converge to *f* in L^p , then there is a subsequence $\{g_n\}_{n=1}^{\infty} \subset \{f_n\}_{n=1}^{\infty}$ such that $\exists \varepsilon_0 > 0$,

$$
||g_n - f||_p \ge \varepsilon, \,\forall \, n.
$$

Since $g_n \to f$ in measure, there is a subsequence $\{h_n\}_{n=1}^{\infty} \subset \{g_n\}_{n=1}^{\infty}$ that converges to *f* almost everywhere. Dominant convergence theorem implies $h_n \to f$ in L^p , a contradiction. \Box

Exercise 6.1.10

Proof. \implies :

The triangle inequality implies

$$
|\|f_n\|_p - \|f\|_p| \le \|f_n - f\|_p \to 0, \ n \to \infty.
$$

⇐=:

As for the inverse proposition, we shall verify a primary inequality first

$$
|a \pm b|^p \le 2^{p-1} (|a|^p + |b|^p), \ \forall, p \ge 1.
$$

In fact, it is equivalent with

$$
\left|\frac{a\pm b}{2}\right|^p\leq \frac{1}{2}|a|^p+\frac{1}{2}|b|^p,
$$

a consequence of the convexity of function $f(x) = |x|^p$ for $p \ge 1$.

Back to the point, construct

$$
g_n = 2^{p-1} (|f_n|^p + |f|^p)
$$

that converges to $g = |2f|^p \in L^1$ almost everywhere. Since $|f_n - f|^p \leq g_n$, the dominant convergence theorem implies

$$
\lim_{n \to \infty} \int |f_n - f|^p = \int \lim_{n \to \infty} |f_n - f|^p = 0 \Longrightarrow \lim_{n \to \infty} ||f_n||_p = ||f||_p.
$$

Exercise 6.1.15

Proof. =*⇒*:

The completeness of L^p space implies $\{f_n\}_{n=1}^{\infty}$ converges to some $f \in L^p$, and the first two conclusions are immediate due to our previous homework.

As for the third, consider an increasing sequence of sets

$$
E_m = \left\{ |f_n| \ge \frac{1}{m} \right\}
$$

for fixed *n*. Obviously, $\mu(E_m)$ is finite since $f_n \in L^p$. Additionally, note that

$$
\int_E |f_n|^p = \int |f_n|^p < +\infty,
$$

where

$$
E = \bigcup_{m=1}^{\infty} E_m = \{ |f_n| \ge 0 \}.
$$

Due to the fact that $|f_n \chi_{E_m^c}| \leq f_n \in L^p$, we can apply the dominant convergence theorem,

$$
\lim_{m \to \infty} ||f_n||_{L^p(E_m^c)} = \lim_{m \to \infty} \left(\int_{E_m^c} |f_n|^p \right)^{\frac{1}{p}} = \left(\lim_{m \to \infty} \int |f_n|^p \chi_{E_m^c} \right)^{\frac{1}{p}} = \left(\int_{E^c} |f_n| \right)^{\frac{1}{p}} = 0.
$$

As a result, $\forall \varepsilon > 0$, $\exists m > 0$, such that

$$
||f_n||_{L^p(E_m^c)}^p < \varepsilon \Longrightarrow \int_{E_m^c} |f_n|^p < \varepsilon,
$$

while $\mu(E_m^c) < +\infty$. *⇐*=:

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of L^p functions in possession of the three properties. For a fixed $\forall \varepsilon > 0$, consider the sets

$$
A_{mn} = E \cap \left\{ |f_m - f_n| \ge \frac{\varepsilon^{\frac{1}{p}}}{3^{\frac{1}{p}} \mu(E)} \right\}.
$$

Here *E* is of finite measure and

$$
\int_{E^c} |f_n|^p < \left(\frac{\varepsilon}{3}\right)^p, \ \forall \, n.
$$

Provided with such conditions, we have

$$
\int_{E\setminus A_{mn}} |f_m - f_n|^p \le \int_{E\setminus A_{mn}} \frac{\varepsilon}{3\mu(E)} = \frac{\varepsilon \mu(E\setminus A_{mn})}{3\mu(E)} \le \frac{\varepsilon}{3}.
$$

Since ${f_n}_{n=1}^{\infty}$ is Cauchy in measure, we assume $\mu(A_{mn}) < \delta$ is small in measure for sufficiently large *m, n*. As a result,

$$
\int_{A_{mn}} |f_m - f_n|^n \le 2^{p-1} \int_{A_{mn}} |f_m|^p + 2^{p-1} \int_{A_{mn}} |f_n|^p \le \frac{\varepsilon}{3}.
$$

The last inequality is correct for sufficiently small δ as a consequence of the uniform integrability of $\{f_n\}_{n=1}^{\infty}$.

Combine the inequalities above, we ultimately obtain

$$
||f_m - f_n||_p \le \left(\int_{E^c} |f_m - f_n|^p + \int_{E \setminus A_{mn}} |f_m - f_n|^p + \int_{A_{mn}} |f_m - f_n|^p \right) \le \varepsilon.
$$