Solutions to Homework 06

Yu Junao

October 15, 2024

Folland. Real Analysis

Exercise 6.1.7

Proof. By interpolation inequality,

$$||f||_q \le ||f||_p^{\frac{p}{q}} ||f||_{\infty}^{\frac{q-p}{q}} < +\infty \Longrightarrow f \in L^q.$$

As an immediate corollary, we have

$$\overline{\lim_{q \to \infty}} \, \|f\|_q \le \|f\|_{\infty}.$$

On the other hand, consider the level set

$$A_{\lambda} = \{ |f| \ge \lambda \}$$

for $0 < \lambda < ||f||_{\infty}$. Therefore,

$$\lambda^{q} \mu(E_{\lambda}) = \int_{E_{\lambda}} \lambda^{q} \, \mathrm{d}\mu \le \int_{E_{\lambda}} |f|^{q} \, \mathrm{d}\mu \le \|f\|_{q}^{q}$$

For fixed λ ,

$$||f||_q \ge \lambda \left(\mu(E_\lambda)\right)^{\frac{1}{q}} \Longrightarrow \lim_{q \to \infty} ||f||_q \ge \lambda.$$

Let λ tend to $||f||_{\infty}$, and

$$\lim_{q \to \infty} \|f\|_q \ge \|f\|_{\infty} \ge \lim_{q \to \infty} \|f\|_q.$$

As a result,

$$\lim_{q \to \infty} \|f\|_q = \|f\|_{\infty}.$$

Exercise 6.1.9

Proof. Fix a $\varepsilon > 0$, we have

$$\mu\{|f_n - f| \ge \varepsilon\} = \frac{1}{\varepsilon^p} \int_{\{|f_n - f|^p \ge \varepsilon^p\}} \varepsilon^p \,\mathrm{d}\mu$$
$$= \frac{1}{\varepsilon^p} \int_{\{|f_n - f|^p \ge \varepsilon^p\}} |f_n - f|^p \,\mathrm{d}\mu$$
$$\le \frac{1}{\varepsilon^p} \int_X |f_n - f|^p \,\mathrm{d}\mu$$
$$\to 0, \ n \to \infty.$$

Conversely, assume $\{f_n\}_{n=1}^{\infty}$ does not converge to f in L^p , then there is a subsequence $\{g_n\}_{n=1}^{\infty} \subset \{f_n\}_{n=1}^{\infty}$ such that $\exists \varepsilon_0 > 0$,

$$||g_n - f||_p \ge \varepsilon, \,\forall \, n.$$

Since $g_n \to f$ in measure, there is a subsequence $\{h_n\}_{h=1}^{\infty} \subset \{g_n\}_{n=1}^{\infty}$ that converges to f almost everywhere. Dominant convergence theorem implies $h_n \to f$ in L^p , a contradiction.

Exercise 6.1.10

Proof. \implies :

The triangle inequality implies

$$|||f_n||_p - ||f||_p| \le ||f_n - f||_p \to 0, \ n \to \infty.$$

⇐=:

As for the inverse proposition, we shall verify a primary inequality first

$$|a \pm b|^p \le 2^{p-1} \left(|a|^p + |b|^p \right), \ \forall, p \ge 1.$$

In fact, it is equivalent with

$$\left|\frac{a \pm b}{2}\right|^{p} \le \frac{1}{2}|a|^{p} + \frac{1}{2}|b|^{p},$$

a consequence of the convexity of function $f(x) = |x|^p$ for $p \ge 1$.

Back to the point, construct

$$g_n = 2^{p-1} \left(|f_n|^p + |f|^p \right)$$

that converges to $g = |2f|^p \in L^1$ almost everywhere. Since $|f_n - f|^p \leq g_n$, the dominant convergence theorem implies

$$\lim_{n \to \infty} \int |f_n - f|^p = \int \lim_{n \to \infty} |f_n - f|^p = 0 \Longrightarrow \lim_{n \to \infty} ||f_n||_p = ||f||_p.$$

Exercise 6.1.15

Proof. \Longrightarrow :

The completeness of L^p space implies $\{f_n\}_{n=1}^{\infty}$ converges to some $f \in L^p$, and the first two conclusions are immediate due to our previous homework.

As for the third, consider an increasing sequence of sets

$$E_m = \left\{ |f_n| \ge \frac{1}{m} \right\}$$

for fixed n. Obviously, $\mu(E_m)$ is finite since $f_n \in L^p$. Additionally, note that

$$\int_E |f_n|^p = \int |f_n|^p < +\infty,$$

where

$$E = \bigcup_{m=1}^{\infty} E_m = \{ |f_n| \ge 0 \}.$$

Due to the fact that $|f_n \chi_{E_m^c}| \leq f_n \in L^p$, we can apply the dominant convergence theorem,

$$\lim_{m \to \infty} \|f_n\|_{L^p(E_m^c)} = \lim_{m \to \infty} \left(\int_{E_m^c} |f_n|^p \right)^{\frac{1}{p}} = \left(\lim_{m \to \infty} \int |f_n|^p \chi_{E_m^c} \right)^{\frac{1}{p}} = \left(\int_{E^c} |f_n| \right)^{\frac{1}{p}} = 0.$$

As a result, $\forall \varepsilon > 0, \exists m > 0$, such that

$$\|f_n\|_{L^p(E_m^c)}^p < \varepsilon \Longrightarrow \int_{E_m^c} |f_n|^p < \varepsilon,$$

while $\mu(E_m^c) < +\infty$. \Leftarrow :

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of L^p functions in possession of the three properties. For a fixed $\forall \varepsilon > 0$, consider the sets

$$A_{mn} = E \cap \left\{ |f_m - f_n| \ge \frac{\varepsilon^{\frac{1}{p}}}{3^{\frac{1}{p}} \mu(E)} \right\}.$$

Here E is of finite measure and

$$\int_{E^c} |f_n|^p < \left(\frac{\varepsilon}{3}\right)^p, \ \forall \, n.$$

Provided with such conditions, we have

$$\int_{E \setminus A_{mn}} |f_m - f_n|^p \le \int_{E \setminus A_{mn}} \frac{\varepsilon}{3\mu(E)} = \frac{\varepsilon\mu(E \setminus A_{mn})}{3\mu(E)} \le \frac{\varepsilon}{3}.$$

Since $\{f_n\}_{n=1}^{\infty}$ is Cauchy in measure, we assume $\mu(A_{mn}) < \delta$ is small in measure for sufficiently large m, n. As a result,

$$\int_{A_{mn}} |f_m - f_n|^n \le 2^{p-1} \int_{A_{mn}} |f_m|^p + 2^{p-1} \int_{A_{mn}} |f_n|^p \le \frac{\varepsilon}{3}.$$

The last inequality is correct for sufficiently small δ as a consequence of the uniform integrability of $\{f_n\}_{n=1}^{\infty}$. Combine the inequalities above, we ultimately obtain

$$||f_m - f_n||_p \le \left(\int_{E^c} |f_m - f_n|^p + \int_{E \setminus A_{mn}} |f_m - f_n|^p + \int_{A_{mn}} |f_m - f_n|^p\right) \le \varepsilon.$$