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Folland. Real Analysis
Exercise 6.1.7
Proof. By interpolation inequality,

∥f∥q ≤ ∥f∥
p
q
p ∥f∥

q−p
q

∞ < +∞ =⇒ f ∈ Lq.

As an immediate corollary, we have

lim
q→∞

∥f∥q ≤ ∥f∥∞.

On the other hand, consider the level set

Aλ = {|f | ≥ λ}

for 0 < λ < ∥f∥∞. Therefore,

λqµ(Eλ) =

∫
Eλ

λq dµ ≤
∫
Eλ

|f |q dµ ≤ ∥f∥qq.

For fixed λ,

∥f∥q ≥ λ (µ(Eλ))
1
q =⇒ lim

q→∞
∥f∥q ≥ λ.

Let λ tend to ∥f∥∞, and

lim
q→∞

∥f∥q ≥ ∥f∥∞ ≥ lim
q→∞

∥f∥q.

As a result,

lim
q→∞

∥f∥q = ∥f∥∞.
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Exercise 6.1.9
Proof. Fix a ε > 0, we have

µ{|fn − f | ≥ ε} =
1

εp

∫
{|fn−f |p≥εp}

εp dµ

=
1

εp

∫
{|fn−f |p≥εp}

|fn − f |p dµ

≤ 1

εp

∫
X

|fn − f |p dµ

→ 0, n → ∞.

Conversely, assume {fn}∞n=1 does not converge to f in Lp, then there is a
subsequence {gn}∞n=1 ⊂ {fn}∞n=1 such that ∃ ε0 > 0,

∥gn − f∥p ≥ ε, ∀n.
Since gn → f in measure, there is a subsequence {hn}∞h=1 ⊂ {gn}∞n=1 that

converges to f almost everywhere. Dominant convergence theorem implies hn → f
in Lp, a contradiction.

Exercise 6.1.10
Proof. =⇒:

The triangle inequality implies
|∥fn∥p − ∥f∥p| ≤ ∥fn − f∥p → 0, n → ∞.

⇐=:
As for the inverse proposition, we shall verify a primary inequality first

|a± b|p ≤ 2p−1 (|a|p + |b|p) , ∀, p ≥ 1.

In fact, it is equivalent with ∣∣∣∣a± b

2

∣∣∣∣p ≤ 1

2
|a|p + 1

2
|b|p,

a consequence of the convexity of function f(x) = |x|p for p ≥ 1.
Back to the point, construct

gn = 2p−1 (|fn|p + |f |p)
that converges to g = |2f |p ∈ L1 almost everywhere. Since |fn − f |p ≤ gn, the
dominant convergence theorem implies

lim
n→∞

∫
|fn − f |p =

∫
lim
n→∞

|fn − f |p = 0 =⇒ lim
n→∞

∥fn∥p = ∥f∥p.
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Exercise 6.1.15
Proof. =⇒:

The completeness of Lp space implies {fn}∞n=1 converges to some f ∈ Lp, and
the first two conclusions are immediate due to our previous homework.

As for the third, consider an increasing sequence of sets

Em =

{
|fn| ≥

1

m

}
for fixed n. Obviously, µ(Em) is finite since fn ∈ Lp. Additionally, note that∫

E

|fn|p =
∫

|fn|p < +∞,

where

E =
∞⋃

m=1

Em = {|fn| ≥ 0}.

Due to the fact that |fnχEc
m
| ≤ fn ∈ Lp, we can apply the dominant convergence

theorem,

lim
m→∞

∥fn∥Lp(Ec
m) = lim

m→∞

(∫
Ec

m

|fn|p
) 1

p

=

(
lim

m→∞

∫
|fn|pχEc

m

) 1
p

=

(∫
Ec

|fn|
) 1

p

= 0.

As a result, ∀ ε > 0, ∃m > 0, such that

∥fn∥pLp(Ec
m) < ε =⇒

∫
Ec

m

|fn|p < ε,

while µ(Ec
m) < +∞.

⇐=:
Let {fn}∞n=1 be a sequence of Lp functions in possession of the three properties.

For a fixed ∀ ε > 0, consider the sets

Amn = E ∩

{
|fm − fn| ≥

ε
1
p

3
1
pµ(E)

}
.

Here E is of finite measure and∫
Ec

|fn|p <
(ε
3

)p

, ∀n.
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Provided with such conditions, we have∫
E\Amn

|fm − fn|p ≤
∫
E\Amn

ε

3µ(E)
=

εµ(E\Amn)

3µ(E)
≤ ε

3
.

Since {fn}∞n=1 is Cauchy in measure, we assume µ(Amn) < δ is small in measure
for sufficiently large m,n. As a result,∫

Amn

|fm − fn|n ≤ 2p−1

∫
Amn

|fm|p + 2p−1

∫
Amn

|fn|p ≤
ε

3
.

The last inequality is correct for sufficiently small δ as a consequence of the uniform
integrability of {fn}∞n=1.

Combine the inequalities above, we ultimately obtain

∥fm − fn∥p ≤
(∫

Ec

|fm − fn|p +
∫
E\Amn

|fm − fn|p +
∫
Amn

|fm − fn|p
)

≤ ε.
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