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Folland. Real Analysis
Exercise 6.2.20
(1)

Proof. Denote

M = max

{
sup
n

∥fn∥p, ∥f∥p
}

< +∞.

Fix an arbitrary g ∈ Lp′ and an ε > 0. As a result of the absolute continuity of
Lebesgue integral, there exists δ > 0, such that

µ(E) < δ =⇒
(∫

E

|g|p′
) 1

p′

<
ε

4M
.

Similarly, there is a set A of finite measure such that(∫
Ac

|g|p′
)

<
ε

4M
.

Moreover, Egorov’s theorem implies the existence of a subset B ⊂ A such that
fn ⇒ f on B.

With the preparations above, we shall prove the weak convergence of {fn}∞n=1.
Hölder’s inequality implies∫

Bc

|(fn − f)g| ≤
(∫

Bc

|fn − f |p
) 1

p
(∫

Bc

|g|p′
) 1

p′

≤ (∥fn∥p + ∥f∥p)

((∫
A\B

|g|p′
) 1

p′

+

(∫
Ac

|g|p′
) 1

p′
)

<
ε

2
.
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On the other hand, we further have∫
B

|(fn − f)g| ≤ ∥fn − f∥p∥g∥p′ ≤
ε

2
.

Here n is so large such that

|fn − f | ≤ ε

2Mµ(B)
.

To sum up, we obtain ∫
|(fn − f)g| < ε → 0

as n tends to infinity.

(2)

Proof. Consider fn = χ[n,n+1], which converges to f = 0 almost everywhere. The
function g = 1 belongs to L∞, but∫

fng =

∫
fn = 1 ̸= 0.

Now assume {fn}∞n=1 is bounded in L∞ and g ∈ L1 where the measure µ is
σ-finite. Note that ∫

(fn − f)g ≤ (∥fn∥+ ∥f∥)
∫

|g| < +∞,

by dominant convergence theorem we have

lim
n→∞

∫
(fn − f)g =

∫
lim
n→∞

(fn − f)g = 0.

Exercise 6.2.22
(1)

Proof. As Riemann-Lebesgue lemma implies, if f ∈ L2(X), then

lim
n→∞

∫ 1

0

f(x) cos(2πnx) dx = 0.
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Therefore, {cos(2πnx)}∞n=1 converges weakly to 0.
For ε ∈ (0, 1), it is easy to check that

µ

{
| cos(2πnx)| > 1

2

}
=

2

3
,

independent of n.
Suppose that {cos(2πnx)}∞n=1 converges to 0 almost everywhere. By dominant

convergence theorem, we have

0 =

∫ 1

0

lim
n→∞

cos2(2πnx) dx =
1

2
lim
n→∞

∫ 1

0

(1 + cos(4πnx)) dx =
1

2
,

a contradiction!

(2)

Proof. Since fn converges to 0 pointwise except for x = 0, we conclude that fn → 0
almost everywhere. For ε > 0, we have

µ{|fn| > ε} ≤ 1

n
→ 0, n → ∞,

thus fn → 0 in measure.
It is obvious that g = χ[0,1] belongs to Lp for all p ∈ [1,+∞], but∫

fng =

∫
fn = 1 > 0.

Therefore, fn never converges weakly in Lp.

Exercise 6.5.41
Proof. Without loss of generality suppose p < q. T is a linear operator since∫

T (λ1f1 + λ2f2)g =

∫
(λ1f1 + λ2f2)Tg

= λ1

∫
f1Tg + λ2

∫
f2Tg

=

∫
(λ1Tf1 + λ2Tf2)g, ∀ g ∈ Lp ∩ Lq.
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We first show that T is bounded on Lq. By the duality expression of Lq norm,
we have for f ∈ Lq that

∥Tf∥q = sup

{∫
(Tf)g

∣∣∣∣ g ∈ Lp, ∥g∥p = 1

}
= sup

{∫
f(Tg)

∣∣∣∣ g ∈ Lp, ∥g∥p = 1

}
≤ sup {∥f∥q∥Tg∥p | g ∈ Lp, ∥g∥p = 1}
≤ sup {∥T∥p→p∥f∥q∥g∥p | g ∈ Lp, ∥g∥p = 1}
= ∥T∥p→p∥f∥q.

Riesz-Thorin interpolation theorem implies T is also bounded on Lr.
It is easy to verify that Lp is dense in Lr. Additionally, T is continuous since

it is linear and bounded. As a result, the extension is unique.

Exercise 6.5.42
Proof. Provided

λTf (α) ≤
C

αq0
∥f∥q0p

λTf (α) ≤
C

αq1
∥f∥q1p

and
1

q
=

t

q0
+

1− t

q1
,

we have

∥Tf∥qq = q

∫ +∞

0

αq−1λTf (α) dα

= q

∫ ∥f∥p

0

αq−1λTf (α) dα + q

∫ +∞

∥f∥p
αq−1λTf (α) dα

≤ Cq

∫ ∥f∥p

0

αq−q0−1∥f∥q0p dα + Cq

∫ +∞

∥f∥p
αq−q1−1∥f∥q0p dα

= C∥f∥q0p
∫ ∥f∥p

0

αq−q0−1 dα + C∥f∥q0p
∫ ∞

∥f∥p
αq−q1−1 dα

= C∥f∥qp.
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