Solutions to Homework 05

Yu Junao

October 6, 2024

Folland. *Real Analysis*

Exercise 3.1.3

(1)

Proof. If $f \in L^1(|\nu|)$, then

$$
\int |f| d\nu^{+} \le \int |f| d\nu^{+} + \int |f| d\nu^{-} = \int |f| d|\nu| < +\infty,
$$

$$
\int |f| d\nu^{-} \le \int |f| d\nu^{+} + \int |f| d\nu^{-} = \int |f| d|\nu| < +\infty.
$$

If $f \in L^{1}(\nu) = L^{1}(\nu^{+}) \cap L^{1}(\nu^{-})$, then

$$
\int |f| d|\nu| = \int |f| d\nu^{+} + \int |f| d\nu^{-} < +\infty.
$$

(2)

Proof.

$$
\left| \int f \, \mathrm{d} \nu \right| = \left| \int f \, \mathrm{d} \nu^+ - \int f \, \mathrm{d} \nu^- \right|
$$

\n
$$
\leq \left| \int f \, \mathrm{d} \nu^+ \right| + \left| \int f \, \mathrm{d} \nu^- \right|
$$

\n
$$
\leq \int |f| \, \mathrm{d} \nu^+ + \int |f| \, \mathrm{d} \nu^+
$$

\n
$$
= \int |f| \, \mathrm{d} |\nu|.
$$

(3)

Proof. On the one hand,

$$
\sup \left\{ \left| \int_E f \, \mathrm{d}\nu \right| : |f| \le 1 \right\} \le \sup \left\{ \left| \int_E |f| \, \mathrm{d} |\nu| \right| : |f| \le 1 \right\} \le |\nu|(E).
$$

On the other hand, the supermum is achieved by

$$
f(x) = \begin{cases} 1, & x \in E \cap P, \\ -1, & x \in E \cap N, \end{cases}
$$

where P and N are respectively the positive and negative set of ν .

 \Box

Exercise 3.2.9

Proof. If $\nu_j \perp \mu$ for any *j*, then

$$
\mu(E) \neq 0 \Longrightarrow \nu_j(E) = 0, \ \forall j \Longrightarrow \sum_{j=1}^{\infty} \nu_j(E) = 0,
$$

$$
\nu_j(E) > 0, \ \forall j \Longrightarrow \mu(E) = 0.
$$

Therefore, μ is singular with respect to the summation of ν_j .

If $\nu_j \ll \mu$ for any *j*, then

$$
\mu(E) = 0 \Longrightarrow \nu_j(E) = 0, \ \forall j \Longrightarrow \sum_{j=1}^{\infty} \nu_j(E) = 0.
$$

Therefore, the summation of ν_j is absolutely continuous with respect to μ . \Box

Exercise 3.2.11

(1)

Proof. Let $\{f_k\}_{j=1}^n$ be a finite subset of $L^1(\mu)$. By the definition, $\forall \varepsilon > 0$, $\exists \delta_j > 0$ for $1 \leq j \leq n$, such that

$$
\left| \int_E f_j \, \mathrm{d}\mu \right| < \varepsilon
$$

as $\mu(E) < \delta_j$. Therefore, we can choose $\delta = \min{\{\delta_1, \cdots, \delta_n\}}$, which satisfies

$$
\left| \int_E f_j \, \mathrm{d}\mu \right| < \varepsilon, \ \forall \, 1 \le j \le n.
$$

 \Box

(2)

Proof. By definition, $\forall \varepsilon > 0$, $\exists N > 0$, such that

$$
\left| \int (f_n - f) \, \mathrm{d}\mu \right| < \frac{\varepsilon}{2}, \ \forall \, n > N.
$$

As is proved above, $\exists \delta > 0$ such that

$$
\left| \int_{E} f d\mu \right| < \frac{\varepsilon}{2}, \quad \left| \int_{E} f_j d\mu \right| < \varepsilon, \ \forall \, 1 \le j \le N
$$

as $\mu(E) < \delta$.

To sum up, we have for $j \leq N$ that

$$
\left| \int_E f_j \, \mathrm{d}\mu \right| < \delta,
$$

and for $j > N$ that

$$
\left| \int_E f_j \, \mathrm{d}\mu \right| \le \left| \int_E f_j - f \, \mathrm{d}\mu \right| + \left| \int_E f \, \mathrm{d}\mu \right| \le \left| \int f_j - f \, \mathrm{d}\mu \right| + \left| \int_E f \, \mathrm{d}\mu \right| < \varepsilon.
$$

Note that δ is independent of *j*, which implies that $\{f_j\}_{j=1}^{\infty}$ is uniformly integrable.

Exercise 3.2.17

Proof. Consider a new measure ρ such that $d\rho = f d\mu$. For $E \in \mathcal{N}$, we have

$$
\nu(E) = 0 \Longrightarrow \mu(E) = 0 \Longrightarrow \rho(E) = 0.
$$

which implies $\rho \ll \nu$.

Let $g = \frac{d\rho}{d\nu}$ d*ν* be the Radon-Nikodym derivative which is unique, and it is easy to check that

$$
\int_E f d\mu = \int_E g d\nu.
$$