Solutions to Homework 05

Yu Junao

October 6, 2024

Folland. Real Analysis

Exercise 3.1.3

(1)

Proof. If $f \in L^1(|\nu|)$, then

$$\begin{split} \int |f| \, \mathrm{d}\nu^+ &\leq \int |f| \, \mathrm{d}\nu^+ + \int |f| \, \mathrm{d}\nu^- = \int |f| \, \mathrm{d}|\nu| < +\infty, \\ \int |f| \, \mathrm{d}\nu^- &\leq \int |f| \, \mathrm{d}\nu^+ + \int |f| \, \mathrm{d}\nu^- = \int |f| \, \mathrm{d}|\nu| < +\infty. \end{split}$$

If $f \in L^1(\nu) = L^1(\nu^+) \cap L^1(\nu^-)$, then
$$\int |f| \, \mathrm{d}|\nu| &= \int |f| \, \mathrm{d}\nu^+ + \int |f| \, \mathrm{d}\nu^- < +\infty. \end{split}$$

L		
L		

(2)

Proof.

$$\begin{split} \int f \, \mathrm{d}\nu &| = \left| \int f \, \mathrm{d}\nu^+ - \int f \, \mathrm{d}\nu^- \right| \\ &\leq \left| \int f \, \mathrm{d}\nu^+ \right| + \left| \int f \, \mathrm{d}\nu^- \right| \\ &\leq \int |f| \, \mathrm{d}\nu^+ + \int |f| \, \mathrm{d}\nu^+ \\ &= \int |f| \, \mathrm{d}|\nu|. \end{split}$$

(3)

Proof. On the one hand,

$$\sup\left\{\left|\int_{E} f \,\mathrm{d}\nu\right| : |f| \le 1\right\} \le \sup\left\{\left|\int_{E} |f| \,\mathrm{d}|\nu|\right| : |f| \le 1\right\} \le |\nu|(E).$$

On the other hand, the supermum is achieved by

$$f(x) = \begin{cases} 1, & x \in E \cap P, \\ -1, & x \in E \cap N, \end{cases}$$

where P and N are respectively the positive and negative set of ν .

Exercise 3.2.9

Proof. If $\nu_j \perp \mu$ for any j, then

$$\mu(E) \neq 0 \Longrightarrow \nu_j(E) = 0, \ \forall j \Longrightarrow \sum_{j=1}^{\infty} \nu_j(E) = 0,$$
$$\nu_j(E) > 0, \ \forall j \Longrightarrow \mu(E) = 0.$$

Therefore, μ is singular with respect to the summation of ν_j .

If $\nu_j \ll \mu$ for any j, then

$$\mu(E) = 0 \Longrightarrow \nu_j(E) = 0, \ \forall j \Longrightarrow \sum_{j=1}^{\infty} \nu_j(E) = 0.$$

Therefore, the summation of ν_j is absolutely continuous with respect to μ . \Box

Exercise 3.2.11

(1)

Proof. Let $\{f_k\}_{j=1}^n$ be a finite subset of $L^1(\mu)$. By the definition, $\forall \varepsilon > 0, \exists \delta_j > 0$ for $1 \le j \le n$, such that

$$\left|\int_{E} f_j \,\mathrm{d}\mu\right| < \varepsilon$$

as $\mu(E) < \delta_j$. Therefore, we can choose $\delta = \min\{\delta_1, \dots, \delta_n\}$, which satisfies

$$\left| \int_{E} f_{j} \, \mathrm{d}\mu \right| < \varepsilon, \,\,\forall \, 1 \le j \le n.$$

(2)

Proof. By definition, $\forall \varepsilon > 0, \exists N > 0$, such that

$$\left| \int (f_n - f) \, \mathrm{d}\mu \right| < \frac{\varepsilon}{2}, \ \forall n > N.$$

As is proved above, $\exists \delta > 0$ such that

$$\left|\int_{E} f \,\mathrm{d}\mu\right| < \frac{\varepsilon}{2}, \quad \left|\int_{E} f_{j} \,\mathrm{d}\mu\right| < \varepsilon, \ \forall 1 \le j \le N$$

as $\mu(E) < \delta$.

To sum up, we have for $j \leq N$ that

$$\left|\int_E f_j \,\mathrm{d}\mu\right| < \delta,$$

and for j > N that

$$\left|\int_{E} f_{j} \,\mathrm{d}\mu\right| \leq \left|\int_{E} f_{j} - f \,\mathrm{d}\mu\right| + \left|\int_{E} f \,\mathrm{d}\mu\right| \leq \left|\int f_{j} - f \,\mathrm{d}\mu\right| + \left|\int_{E} f \,\mathrm{d}\mu\right| < \varepsilon.$$

Note that δ is independent of j, which implies that $\{f_j\}_{j=1}^{\infty}$ is uniformly integrable.

Exercise 3.2.17

Proof. Consider a new measure ρ such that $d\rho = f d\mu$. For $E \in \mathcal{N}$, we have

$$\nu(E) = 0 \Longrightarrow \mu(E) = 0 \Longrightarrow \rho(E) = 0.$$

which implies $\rho \ll \nu$. Let $g = \frac{d\rho}{d\nu}$ be the Radon-Nikodym derivative which is unique, and it is easy to check that

$$\int_E f \,\mathrm{d}\mu = \int_E g \,\mathrm{d}\nu.$$