Solutions to Homework 09

Yu Junao

November 10, 2024

Folland. *Real Analysis*

Exercise 6.2.21

 $Proof. \Leftrightarrow$

It has been proved in **exercise 6.2.20**.

=*⇒*:

Consider test function $\chi_{\{a\}} \in l^{p'}(A)$, the weak convergence of $\{f_n\}_{n=1}^{\infty}$ implies

$$
f_n(a) = \int f_n \chi_{\{a\}} \to 0, \ n \to \infty.
$$

Therefore, $f_n \to f$ pointwise.

According to the duality property of $l^p(A)$, we regard $\{f_n\}_{n=1}^{\infty}$ as a sequence of bounded linear functionals on $l^{p'}(A)$. For a fixed $g \in l^{p'}$, we have

$$
\lim_{n \to \infty} \int f_n g \to 0 \Longrightarrow \sup_n \left| \int f_n g \right| < +\infty.
$$

By resonance theorem, the operator norm, namely the l^p norm of $\{f_n\}$ is uniformly bounded. In other words, we obtain

$$
\sup_n \|f\|_p < +\infty
$$

 \Box

Supplements

Exercise 1 (Urysohn's lemma). *Given an open* $\Omega \subset \mathbb{R}^n$ *and a compact set* $K \subset \Omega$ *. Prove: there exists* $\varphi \in C_c^{\infty}(\Omega)$ *such that* $\varphi|_K = 1$ *and* $0 \leq \varphi \leq 1$ *.*

Proof. Without loss of generality assume Ω is bounded. Otherwise, there exists $r > 0$ such that $K \subset B_r(0)$, thus we can substitute Ω with $\Omega \cap B_r(0)$ and let $\varphi = 0$ in $\Omega \backslash B_r(0)$.

The boundedness of Ω admits the existence of a sufficiently large $R > 0$ such that $\Omega \subset B_R(0)$. It is easy to verify that $B_R(0) \setminus \Omega$ is a bounded closed set, and then a compact set.

Now we are going to prove there is a positive distance between *K* and $\overline{B_R(0)}\backslash\Omega$. If

$$
\inf \left\{ |x - y| \, \middle| \, x \in K, y \in \overline{B_R(0)} \backslash \Omega \right\} = 0,
$$

then there is a sequence $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ such that $|x_n - y_n| < \frac{1}{n}$ $\frac{1}{n}$. Since ${x_n}_{n=1}^\infty$ is bounded, it possesses a convergent subsequence ${x_{n_k}}_{k=1}^\infty$, converging to $x \in K$. Moreover, there is a convergent subsequence of $\{y_{n_k}\}_{k=1}^{\infty}$, converging to $y \in B_R(0) \backslash \Omega$. As a result, we have

$$
x = y \Longrightarrow \overline{B_R(0)} \setminus \Omega \cap K \neq \emptyset \Longrightarrow \Omega^c \cap K \neq \emptyset \Longrightarrow \Omega^c \cap \Omega \neq \emptyset,
$$

a contradiction.

Back to the point, take the mollifier η_{ε} such that $\varepsilon < \frac{d}{2}$, and define

$$
\varphi(x) = \int \chi_{\tilde{K}}(y)\eta_{\varepsilon}(x-y) \, \mathrm{d}y \in C_c^{\infty}(\Omega).
$$

where $K \subset \tilde{K} \subset \Omega$ satisfies

$$
\tilde{K} = \left\{ x \in \Omega \left| \inf_{y \in K} |x - y| \le \frac{d}{2} \right. \right\}.
$$

This φ definitely satisfies our requirements since

$$
x \in K \Longrightarrow \varphi(x) = \int_{\tilde{K}} \eta_{\varepsilon}(x - y) dy = 1,
$$

$$
x \in \Omega^c \Longrightarrow \varphi(x) = \int 0 dy = 0.
$$

 \Box

Exercise 2. *Show that finite measure space* $M(X, B_X, \mathbb{C})$ *is a Banach space under total variation norm.*

Proof. Let $\{\mu_n\}_{n=1}^{\infty} \subset M(X, B_X, \mathbb{R})$ be a sequence of complex Borel measures such that

$$
\lim_{m,n \to \infty} ||\mu_m - \mu_n|| = \lim_{m,n \to \infty} |\mu_m - \mu_n|(X) = 0.
$$

For every $E \in B_X$, we have

$$
|\mu_m(E) - \mu_n(E)| \le |\mu_m - \mu_n|(E) \le |\mu_m - \mu_n|(E) \to 0, \ m, n \to \infty.
$$

That is to say $\{\mu_n(E)\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{C} . Therefore, we can define the limit set function "pointwise" by

$$
\mu(E) = \lim_{n \to \infty} \mu_n(E).
$$

Finally, we need to verify that μ is a Borel measure in deed. Actually, it is obvious that

$$
\mu(\varnothing) = \lim_{n \to \infty} \mu_n(\varnothing) = 0.
$$

Moreover, let ${E_k}_{k=1}^\infty$ be a disjoint sequence of Borel measurable sets, then

$$
\mu\left(\coprod_{k=1}^{\infty} E_k\right) = \lim_{n \to \infty} \mu_n\left(\coprod_{k=1}^{\infty} E_k\right) = \lim_{n \to \infty} \sum_{k=1}^{\infty} \mu_n(E_k) = \sum_{k=1}^{\infty} \mu(E_k).
$$

Here it is reasonable to swap two limits since the finiteness of μ_n implies the series is absolutely convergent.

We have proved that μ is a measure, and by definition Borel sets are μ measurable and μ is finite. As a result, we conclude that μ is a finite Borel measure and thus $M(X, B_X, \mathbb{C})$ is a Banach space. \Box

Exercise 3. *If X is a Banach space, then F is precompact if and only if* $\forall \varepsilon > 0$ *, there exists a precompact* K_{ε} *such that*

$$
F \subset K_{\varepsilon} + B_{\varepsilon}(0) = \{ f + g \mid f \in K_{\varepsilon}, g \in B_{\varepsilon}(0) \}.
$$

Proof. =*⇒*:

Take $K_{\varepsilon} = F$. *⇐*=:

If *F* is not precompact, then there exist a sequence $\{\varphi_n\}_{n=1}^{\infty} \subset F$ such that every subsequence of it is not Cauchy.

Consider decomposition $\varphi_n = f_n + g_n$ where $f_n \in K_{\varepsilon}, g_n \in B_{\varepsilon}(0)$ for a pending $\varepsilon > 0$, then

$$
\|\varphi_m - \varphi_n\| \le \|f_m - f_n\| + \|g_m - g_n\| \le \|f_m - f_n\| + 2\varepsilon.
$$

Since K_{ε} is precompact, there is a sufficient large *N* and a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ such that

$$
||f_{n_j} - f_{n_k}|| < \varepsilon, \ \forall \, n_j, n_k > N.
$$

However, our assumption implies $\{\varphi_{n_k}\}_{n=1}^{\infty}$ is not Cauchy, hence there exist $\varepsilon_0 \geq 0$ and $j, k > N$ such that

$$
\|\varphi_{n_j}-\varphi_{n_k}\|\geq \varepsilon_0.
$$

Take $ε = \frac{ε_0}{3}$ $\frac{\varepsilon_0}{3}$ and we obtain

$$
\varepsilon_0 \le ||\varphi_{n_j} - \varphi_{n_k}|| \le ||f_{n_j} - f_{n_k}|| + 2\varepsilon < 3\varepsilon = \varepsilon_0,
$$

a contradiction.

 \Box