Solutions to Homework 03

Yu Junao

September 23, 2024

Folland. *Real Analysis*

Exercise 1.4.17

Proof. The σ -subadditivity of μ^* indicates

$$
\mu^* \left(E \cap \left(\bigsqcup_{k=1}^{\infty} A_k \right) \right) = \mu^* \left(\bigsqcup_{k=1}^{\infty} (E \cap A_k) \right) \le \sum_{k=1}^{\infty} \mu^* (E \cap A_k),
$$

hence we only need to prove the reverse inequality.

According to Carathéodory criterion, we have for any *n >* 0 that

$$
\mu^* \left(E \cap \left(\bigsqcup_{k=1}^n A_k \right) \right) = \mu^* \left(E \cap \left(\bigsqcup_{k=1}^n A_k \right) \cap A_n \right) + \mu^* \left(E \cap \left(\bigsqcup_{k=1}^n A_k \right) \cap A_n^c \right)
$$

\n
$$
= \mu^* \left(E \cap A_n \right) + \mu^* \left(E \cap \left(\bigsqcup_{k=1}^n A_k \right) \cap A_n^c \right)
$$

\n
$$
= \mu^* \left(E \cap A_n \right) + \mu^* \left(E \cap \left(\bigsqcup_{k=1}^{n-1} A_k \right) \right)
$$

\n
$$
= \mu^* \left(E \cap A_n \right) + \mu^* \left(E \cap A_{n-1} \right) + \mu^* \left(E \cap \left(\bigsqcup_{k=1}^{n-2} A_k \right) \right)
$$

\n
$$
= \cdots \cdots
$$

\n
$$
= \sum_{k=2}^\infty \mu^* \left(E \cap A_k \right) + \mu^* \left(E \cap \left(\bigsqcup_{k=1}^1 A_k \right) \right)
$$

\n
$$
= \sum_{k=1}^\infty \mu^* \left(E \cap A_k \right).
$$

As a consequence,

$$
\mu^* \left(E \cap \left(\bigcup_{k=1}^{\infty} A_k \right) \right) \geq \mu^* \left(\bigcup_{k=1}^n (E \cap A_k) \right) = \sum_{k=1}^n \mu^* (E \cap A_k).
$$

Let $n \to \infty$, and we reach the conclusion.

Exercise 1.4.23

(1)

Proof. (The statement of the problem contains a mistake $-\infty \le a < b \le +\infty$) *which should be revised as* $-\infty \le a \le b \le +\infty$ *.*)

By **proposition 1.7**, we only need to check

$$
\mathcal{E} = \{(a, b] \cap \mathbb{Q} \mid a \le b, a, b \in \overline{\mathbb{R}}\}
$$

is an **elementary family**.

By choosing $a = b$, we notice $\emptyset \in \mathcal{E}$.

Given $A, B \in \mathcal{E}$, we have $A \cap B = \emptyset \in \mathcal{E}$ if they are disjoint and $A \cap B = A \in \mathcal{E}$ if *A* ⊂ *B*. The remaining case is $A = (a_1, a_2] ∩ Q$ and $B(b_1, b_2) ∩ Q$ such that

 $a_1 < b_1 < a_2 < b_2$ or $b_1 < a_1 < b_2 < a_2$.

Without loss of generality, we only focus on the former case, in which

$$
A \cap B = (b_1, a_2] \in \mathcal{E}.
$$

For $\emptyset \in \mathcal{E}$, its complement in $\mathbb Q$ is

$$
\varnothing^c = \mathbb{Q} = (-\infty, +\infty] \cap \mathbb{Q} \in \mathcal{E}.
$$

For nonempty $A = (a, b] \cap \mathbb{Q} \in \mathcal{E}$, its complement in $\mathbb Q$ is

$$
A^c = ((-\infty, a] \cap \mathbb{Q}) \cup ((b, +\infty) \cap \mathbb{Q}) = ((-\infty, a] \cap \mathbb{Q}) \cup ((b, +\infty] \cap \mathbb{Q}),
$$

a finite union of elements in *E*.

(2)

Proof. Let

$$
A_k = (a_k, b_k] \cap \mathbb{Q}, \ k = 1, 2, \cdots
$$

 \Box

 \Box

be countably many sets in \mathcal{A} , then

$$
\bigcup_{k=1}^{\infty} A_k = \left(\bigcup_{k=1}^{\infty} (a_k, b_k]\right) \cap \mathbb{Q} \subset \mathbb{R} \cap \mathbb{Q} = \mathbb{Q}.
$$

That is to say, the σ -algebra generated be $\mathcal A$ is a subset of $\mathcal P(\mathbb Q)$.

On the other hand, fix an arbitrary $Q \in \mathcal{P}(\mathbb{Q})$. $\mathbb Q$ is obviously countable, and *∀ q ∈ Q*, we have

$$
\{q\} = \bigcap_{k=1}^{\infty} \left(\left(q - \frac{1}{k}, q \right) \cap Q \right).
$$

Therefore, Q is generated by A through countable union and intersection. \Box

(3)

Proof. For $\{A_k\}_{k=1}^{\infty} \subset \mathcal{A}$ such that their union belongs to \mathcal{A} , we have

$$
\mu_0\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu_0(\varnothing) = 0 = \sum_{k=1}^{\infty} \mu_0(A_k),
$$

if $A_1 = A_2 = \cdots = \emptyset$. Otherwise,

$$
\mu_0\left(\bigcup_{k=1}^{\infty} A_k\right) = +\infty = \sum_{k=1}^{\infty} \mu_0(A_k).
$$

Therefore, μ_0 is definitely a premeasure.

Consider a natural extension μ_1 such that

$$
\mu_1(A) = \begin{cases} 0, & A = \emptyset, \\ +\infty, & A \neq \emptyset. \end{cases}
$$

It is easy to check μ_1 is a measure on $\mathcal{P}(\mathbb{Q})$.

Let μ_2 be the counting measure such that

$$
\mu_2(A) = \begin{cases} |A|, & |A| < +\infty, \\ +\infty, & |A| = +\infty. \end{cases}
$$

For nonempty $A \in \mathcal{A}$, A includes all rational numbers in an interval, which are countably infinite. Therefore, $\mu_2(A) = +\infty = \mu_0(A)$.

To conclude, μ_1 and μ_2 are two different measures that coincide on \mathcal{A} . \Box