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Exercise 6.3.27
1

Proof. Set a (—1)-homogeneous function K(z,y) = -+. Comparison Discrimina-
tion implies

+o0 1 +o0 Yy r o
K(1,y)|y » dy = dy = C, < +o0.
/0 |[K(1,y)ly~ > dy /0 1 W=

Hence T is strong type (p,p) and
1Tl < Cpll £l

Moreover, Euler’s reflection formula implies

T
C, = mese —.
p

Exercise 6.3.29

Proof. Set a (—1)-homogeneous function K(z,y) = 2771y (0,100)(y — ) with,
which satisfies

/+OO!K<1 Iy~ d /+OO P = <o, <
Y)Yy P Ay = xXr P = < oo, < —.
0 1 1—08p P

For f(z) = 27h(x), we have

1
171l < 1_—6prHp7 Tf(x) = ; K(z,y)f(y)dy.



By Theorem 6.20, we have
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which implies
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Let 6 = v =1+ %, and we obtain one of the inequalities. Swapping x
and y in K, we similarly achieve the other inequality by taking § = % and
y=1- %. u

Exercise 6.4.36

Proof. For q < p, we have
“+o0o
Jisirdu= [ ot > ) an
0

1 “+00
SQAAqWHf#@MkWWMm[ A1 )
_ q p
—n({7 £ 0D+ Ll

< +00.
For ¢ > p, let ||f|leo = M < 400, then
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Exercise 6.5.43

Proof. First, we compute A, f(z). Due to the symmetry of x[o1], we assume x > %
1 1, O<r<l-—=zx
§§x<1:>ATf(a:): 7”“21—;””, l—z<r<uz,

<, r>x
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5, O0<r<l1
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=

O<r<ao-—1

r>1= A f(r) === 2 —-1<r<zx.
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Therefore, we obtain the explicit expression

1, xz € (0,1),
Hf(z) =

x € (—00,0) U (1, 4+00)
It is obvious that

1 “+o00 p 400 ol— _
1 2P +00, p=1,
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In the meantime, we have

1 = 51 M ({111 > A

1
=1max< sup A, sup A(1+u({—>/\}>)
1<t o<agd z—1

= max{l, sup (A + 1)} =1.
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Exercise 6.5.45
Proof. Let ¢ = & and K(z,y) = |z —y[7*, then
A (e | K(r.y) > ) = Xm (| o =] < 274)) = x0m (B, () = G

Here C), equals the volume of n-dimensional unit ball, a constant that only relies
on n. Therefore, K(x,-) € L2, and similar arguments imply K (-,y) € L&>.
According to Theorem 6.36, T, is weak type (1, 2) and strong type (p,7). O



