Solutions to Homework 07

Yu Junao

October 24, 2024

Folland. Real Analysis

Exercise 6.3.27

Proof. Set a (-1)-homogeneous function $K(x,y) = \frac{1}{x+y}$. Comparison Discrimination implies

$$\int_0^{+\infty} |K(1,y)| y^{-\frac{1}{p}} \, \mathrm{d}y = \int_0^{+\infty} \frac{y^{-\frac{1}{p}}}{1+y} \, \mathrm{d}y = C_p < +\infty.$$

Hence T is strong type (p, p) and

$$||Tf||_p \le C_p ||f||_p.$$

Moreover, Euler's reflection formula implies

$$C_p = \pi \csc \frac{\pi}{p}.$$

Exercise 6.3.29

Proof. Set a (-1)-homogeneous function $K(x,y) = x^{\beta-1}y^{-\beta}\chi_{(0,+\infty)}(y-x)$ with, which satisfies

$$\int_0^{+\infty} |K(1,y)| y^{-\frac{1}{p}} \, \mathrm{d}y = \int_1^{+\infty} x^{\beta - 1 - \frac{1}{p}} = \frac{1}{1 - \beta p} < +\infty, \ \beta < \frac{1}{p}.$$

For $f(x) = x^{\gamma}h(x)$, we have

$$||Tf||_p \le \frac{1}{1-\beta p} ||f||_p, \ Tf(x) = \int_0^{+\infty} K(x,y)f(y) \, \mathrm{d}y.$$

By **Theorem 6.20**, we have

$$\int_0^{+\infty} \left(\int_0^{+\infty} x^{\beta - 1} y^{\gamma - \beta} h(y) \chi_{(0, +\infty)}(y - x) \, \mathrm{d}y \right)^p \mathrm{d}x \le \frac{1}{(1 - \beta p)^p} \int_0^{+\infty} x^{\gamma p} (h(x))^p \, \mathrm{d}x,$$

which implies

$$\int_0^{+\infty} x^{p(\beta-1)} \left(\int_x^{+\infty} y^{\gamma-\beta} h(y) \, dy \right)^p dx \le \frac{1}{(1-\beta p)^p} \int_0^{+\infty} x^{\gamma p} (h(x))^p \, dx.$$

Let $\beta=\gamma=1+\frac{r-1}{p}$, and we obtain one of the inequalities. Swapping x and y in K, we similarly achieve the other inequality by taking $\beta=\frac{r+1}{p}$ and $\gamma=1-\frac{r+1}{p}$.

Exercise 6.4.36

Proof. For q < p, we have

$$\int |f|^{q} d\mu = \int_{0}^{+\infty} q \lambda^{q-1} \mu \left(\{ |f| > \lambda \} \right) d\lambda
\leq q \int_{0}^{1} \lambda^{q-1} \mu \left(\{ f \neq 0 \} \right) d\lambda + q \|f\|_{p,\infty}^{p} \int_{1}^{+\infty} \lambda^{q-p-1} d\lambda
= \mu \left(\{ f \neq 0 \} \right) + \frac{q}{p-q} \|f\|_{p,\infty}^{p}
< +\infty.$$

For q > p, let $||f||_{\infty} = M < +\infty$, then

$$\int |f|^q d\mu = \int_0^M q \lambda^{q-1} \mu \left(\{ |f| > \lambda \} \right) d\lambda$$

$$\leq q \|f\|_{p,\infty}^p \int_0^M \lambda^{q-p-1} d\lambda$$

$$= \frac{q}{q-p} M^{q-p}$$

$$< +\infty.$$

Exercise 6.5.43

Proof. First, we compute $A_r f(x)$. Due to the symmetry of $\chi_{[0,1]}$, we assume $x \geq \frac{1}{2}$.

$$\frac{1}{2} \le x < 1 \Longrightarrow A_r f(x) = \begin{cases} 1, & 0 < r < 1 - x \\ \frac{r+1-x}{2r}, & 1 - x \le r \le x \\ \frac{1}{2r}, & r > x \end{cases}$$

$$x = 1 \Longrightarrow A_r f(x) = \begin{cases} \frac{1}{2}, & 0 < r < 1 \\ \frac{1}{2r}, & r \ge 1 \end{cases}$$

$$x > 1 \Longrightarrow A_r f(x) = \begin{cases} 0, & 0 < r < x - 1 \\ \frac{x+1-r}{2r}, & x - 1 \le r \le x \\ \frac{1}{2r}, & r > x \end{cases}$$

Therefore, we obtain the explicit expression

$$Hf(x) = \begin{cases} 1, & x \in (0,1), \\ \frac{1}{1+|2x-1|}, & x \in (-\infty,0) \cup (1,+\infty) \end{cases}$$

It is obvious that

$$||Hf||_p^p = \int_0^1 1 + 2 \int_1^{+\infty} \left(\frac{1}{1 + |2x - 1|} \right)^p = 1 + \int_1^{+\infty} \frac{2^{1-p}}{x^p} = \begin{cases} +\infty, & p = 1, \\ 1 + \frac{2^{1-p}}{p-1}, & p > 1. \end{cases}$$

In the meantime, we have

$$\begin{aligned} \|Hf\|_{1,\infty} &= \sup_{\lambda > 0} \lambda \mu \left(\{ |f| > \lambda \} \right) \\ &= \max \left\{ \sup_{\frac{1}{2} \le \lambda \le 1} \lambda, \sup_{0 \le \lambda \le \frac{1}{2}} \lambda \left(1 + \mu \left(\left\{ \frac{1}{x - 1} > \lambda \right\} \right) \right) \right\} \\ &= \max \left\{ 1, \sup_{0 \le \lambda \le \frac{1}{2}} (\lambda + 1) \right\} = 1. \end{aligned}$$

Exercise 6.5.45

Proof. Let $q = \frac{n}{\alpha}$ and $K(x,y) = |x-y|^{-\alpha}$, then

$$\lambda^q m\left(\left\{x\mid K(x,y)>\lambda\right\}\right) = \lambda^q m\left(\left\{x\mid |x-y|<\lambda^{-\frac{1}{\alpha}}\right\}\right) = \lambda^q m\left(B_{\lambda^{-\frac{1}{\alpha}}}(y)\right) = C_n.$$

Here C_n equals the volume of *n*-dimensional unit ball, a constant that only relies on *n*. Therefore, $K(x,\cdot) \in L^{q,\infty}$, and similar arguments imply $K(\cdot,y) \in L^{q,\infty}$.

According to **Theorem 6.36**, T_{α} is weak type $(1, \frac{n}{\alpha})$ and strong type (p, r).