9 5 FF9.26

1 Measures

1.5 Borel measures

In case X is a topological space, an outer measure p on X is said to be Borel-
regular if all Borel sets are p-measurable and if for each subset A C X there is a Borel
set B O A such that u(B) = p(A). (Notice that this does not imply u(B\A) = 0
unless A is p-measurable and p(A) < co.)

Z X 1.1. We say a Borel reqular measure p on a topological space X is "open o-finite”
if X =U;V; where Vj is open in X and p(V;) < oo for each j =1,2,...

EI1.2. Suppose X is a topological space with the property that every closed subset of
X is the countable intersection of open sets (this trivially bolds e.g. if X is a metric
space), suppose . is an open o-finite Borel-reqular measure on X. Then

(1)

M(A) - U opiE,fUDAM(U)
for each subset A C X, and
(2)
p(A) = sup  p(C)
C closed, CCA

for each p-measurable subset A C X.

ELL.1. In case X is a Hausdorff space (so compact sets in X are closed) which is
o-compact (i.e. X = U;K; with K; compact for each j ), then the conclusion (2) in
the above theorem guarantees that

n(A) = sup  p(K)

K compact, KCA

for each p-measurable subset A C X with pu(A) < oo, because under the above condi-
tions on X any closed set C' can be written as the union of an increasing sequence of
compact sets.



2 Integration

2.1 Measurable functions

& X1.3. A mapping f: X — Y is called (M, N)-measurable, or just measurable, if
fTYE) e M forall E € N.

51 31.4. Let C C P(X).
a(f7'C) = f7la(C). (1.1)

Proof. Let
G={Beo)|f'Bea(f'C)}. (1.2)
C C G and G is a g-algebra. Then we conclude that G = ¢(C), which shows that
fto(C) co(f'0).
On the other hand,
f'cc floC)=oa(f'C) C fo(0). (1.3)
[l

51321.5 (measurable functions). Let f be a mapping between measurable spaces (S,S)
and (T,T), and let C C P(T') with o(C) =T. Then

fis S/T -measurable < f~'CCS.

51321.6 (composition). For maps f : S — T and g : T — U between the measurable
spaces (S, S), (T, T), (U,U), we have

f,g are measurable = h = go f is S/U-measurable.

The class of measurable functions is closed under countable limiting operations:

51321.7 (bounds and limits). If the functions f1, fa,...: (X, M) = R are measurable,

then so are the functions

sup f,, inf f,, limsup f,, linl inf f,,.
n n n—00 n—00

51 #1.8 (elementary operations). If the functions f,g: (X, M) — R are measurable,
then so are the functions

(1) fg and af + bg,a,b € R,

(13) f/g when g #0 on X.

5] 221.9 (simple approximation). For any measurable function f > 0 on (X, M), there
exist some simple, measurable functions fi, fa,...: X — Rtwith f, 1 f.



2.2-2.3 Integration

e S*: the set of non-negative simple measurable functions.

e L: the space of all measurable functions f : X — R.

£ X1.10. Let f =" a;la, € ST, where a; € RT, A; € M. Define

/Qfdﬂ = Zaiﬂ (Ai) . (1.4)

@111, Let fo,g,, f,g € ST.

6) fo T f = n(fa) T u(f);

7 fn Ta gn T hmn—>oo fn S hmn—>oo gn = hmn—>o<> H (fn) < hmn—>oo H (gn)

(1) p(Ia) = pu(A), VA € M;

(2) plaf) = au(f),Va € RY;

3) ul(f +g)=np(f)+ug);

(4) f<g=nlf) < ulg);

(5) fa b fou(fr) < oo = p(fu) & p(f);
(6)

(7)

& X1.12. To extend the integral to general measurable functions f > 0, we choose
some simple measurable functions f1, fo,... with 0 < f, 1 f, and define

p(f) = T p(f).
We need to show that the limit is independent of the choice of approrimating sequence

(fn)-

51 31.13 (consistence). Let f, f1, fa,... and g be measurable functions on a measure
space (X, M, ), where all but f are simple. Then

02y} = nto) < iy uis)

EF21.14 (monotone convergence, Levi). For any measurable functions f, fi, fo... on

(X, M, ), we have
0</futf = wphtpf

51321.15 (Fatou). For any measurable functions f1, fa,... > 0 on (S, M, p), we have

liminf puf, > pliminf f,.
n—oo n—oo



EF21.16 (extended dominated convergence, Lebesgue). Let f, fi, fo, ... and g, g1, ga, - . .

0 be measurable functions on (X, M, ). Then

fo— f
ol Sgn—=9 ¢ = pfa— pf
[gn — p1g < 00

2.4 Modes of convergence

& X 1.17. Let (X, M,u) be a measure space, and let f and (f,)n>1 be real-valued
M-measurable function on X.

o {f.} converges to f almost uniformly if for Ve >0, IN € M, u(N) < e such
that
lim sup |fu(z) — f(z)| = 0. (1.5)

n—oo reN¢c

EH1.18. Let (X, M,p) be a measure space, and let f and (fn)n>1 be real-valued
M-measurable function on X.

o £, %5 f, if and only if Ve > 0

1 (ﬂ Ulsi— £l = s]) =0. (1.6)
n=11i=n
o £, %" f,if and only if Ve > 0
}gu(UHh—ﬂZd)zQ (1.7)

1=n

o £, 55 f, if and only if for any subsequence (fur), there exists its subsequence Ju,
such that

fn; a._m;. f (18)
EFB1.19. Let (X, M, u) be a measure space.

fo =T f = fn = i e T f e o S (1.9)

o [If 1 1s finite, then

fo =5 o fu = f. (1.10)

o If f, 5 f, there exists a subsequence fn, such that f,, &5 1.

>



2.5 Product measures

Let (X, M, ), (Y,N,v) be two measure spaces. Define

C:={AxB:Ae M,BeN}, (1.11)
(A x B) :==u(A)v(B). (1.12)

w#1.20. 7 is o-additive on C.

If EC X xY, forxe X and y € Y we define the z-section E, and the y-section
EY of E by

E.={yeY:(zv,y) e E}, E'={xeX:(x,y) € E}.

Also, if f is a function on X x Y we define the z-section f, and the y-section fY
of f by
fey) = f¥(x) = f(z,y)

@#A1.21. a. fE€ M x N, then E, € N forallz € X and EY € M forally €Y.

b. If f is M @ N -measurable, then f, is N-measurable for all z € X and fY is
M-measurable for ally € Y.

EI1.22. Suppose (X, M, p) and (Y,N,v) are o-finite measure spaces. If E € M ®
N, then the functions x — v (E,) and y — p(EY) are measurable on X and Y,
respectively, and

w x W(E) = / v (By) du(z) = / 1 (EY) du(y).

EF21.23 (Fubini-Tonelli Theorem). Suppose that (X, M,pu) and (Y,N,v) are o—
finite measure spaces.

(Tonelly) If f € LT(X xY), then the functions g(x) = [ fudv and h(y) =
[ fdp are in LT (X) and L*(Y'), respectively, and

[ fitu ) = /foydy >]dﬂ /{/f:cyd,u )}du() (1.13)

b. (Fubini) If f € L'(u x v), then fo € L*(v) for ace. x € X, f¥ € LY(u) for a.e.
y €Y, the a.e.-defined functions g(x) = [ fydv and h(x ffydy are in L'(p) and
1(V), respectively, and (1.13) holds

’le_‘H'.ng 25, 26, P48 2, 5, P59 21; P69 49,
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