第四教学周9.26

1 Measures

1.5 Borel measures

In case X is a topological space, an outer measure μ on X is said to be Borelregular if all Borel sets are μ -measurable and if for each subset $A \subset X$ there is a Borel set $B \supseteq A$ such that $\mu(B) = \mu(A)$. (Notice that this does not imply $\mu(B \setminus A) = 0$ unless A is μ -measurable and $\mu(A) < \infty$.

 $\mathcal{R} \times 1.1$. We say a Borel regular measure μ on a topological space X is "open σ -finite" if $X = \bigcup_j V_j$ where V_j is open in X and $\mu(V_j) < \infty$ for each $j = 1, 2, \ldots$

定理1.2. Suppose X is a topological space with the property that every closed subset of X is the countable intersection of open sets (this trivially bolds e.g. if X is a metric space), suppose μ is an open σ -finite Borel-reqular measure on X. Then

(1)

$$
\mu(A) = \inf_{U \text{ open, } U \supset A} \mu(U)
$$

for each subset $A \subset X$, and

(2)

$$
\mu(A) = \sup_{C \ closed, \ C \subset A} \mu(C)
$$

for each μ -measurable subset $A \subset X$.

 \mathcal{F} **EL1.1.** In case X is a Hausdorff space (so compact sets in X are closed) which is σ-compact (i.e. $X = \bigcup_j K_j$ with K_j compact for each j), then the conclusion (2) in the above theorem guarantees that

$$
\mu(A) = \sup_{K \text{ compact, } K \subset A} \mu(K)
$$

for each μ -measurable subset $A \subset X$ with $\mu(A) < \infty$, because under the above conditions on X any closed set C can be written as the union of an increasing sequence of compact sets.

2 Integration

2.1 Measurable functions

 \mathcal{R} **X** 1.3. A mapping $f : X \mapsto Y$ is called $(\mathcal{M}, \mathcal{N})$ -measurable, or just measurable, if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.

引理1.4. Let C ⊂ $P(X)$.

$$
\sigma(f^{-1}\mathcal{C}) = f^{-1}\sigma(\mathcal{C}).\tag{1.1}
$$

Proof. Let

$$
\mathcal{G} = \left\{ B \in \sigma(\mathcal{C}) | f^{-1}B \in \sigma(f^{-1}\mathcal{C}) \right\}.
$$
\n(1.2)

 $\mathcal{C} \subset \mathcal{G}$ and \mathcal{G} is a σ -algebra. Then we conclude that $\mathcal{G} = \sigma(\mathcal{C})$, which shows that

$$
f^{-1}\sigma(\mathcal{C})\subset \sigma(f^{-1}\mathcal{C}).
$$

On the other hand,

$$
f^{-1}\mathcal{C} \subset f^{-1}\sigma(\mathcal{C}) \Rightarrow \sigma(f^{-1}\mathcal{C}) \subset f^{-1}\sigma(\mathcal{C}).
$$
\n
$$
\Box
$$

引理1.5 (measurable functions). Let f be a mapping between measurable spaces (S, \mathcal{S}) and (T, \mathcal{T}) , and let $\mathcal{C} \subset \mathcal{P}(T)$ with $\sigma(\mathcal{C}) = \mathcal{T}$. Then

f is S/\mathcal{T} -measurable $\Leftrightarrow f^{-1}\mathcal{C} \subset \mathcal{S}$.

引理1.6 (composition). For maps $f : S \to T$ and $q : T \to U$ between the measurable spaces $(S, \mathcal{S}), (T, \mathcal{T}), (U, \mathcal{U}),$ we have

f, g are measurable
$$
\Rightarrow
$$
 h = g \circ f is S/U-measurable.

The class of measurable functions is closed under countable limiting operations:

引理1.7 (bounds and limits). If the functions $f_1, f_2, \ldots : (X, \mathcal{M}) \to \overline{\mathbb{R}}$ are measurable, then so are the functions

$$
\sup_{n} f_n, \quad \inf_{n} f_n, \quad \limsup_{n \to \infty} f_n, \quad \liminf_{n \to \infty} f_n.
$$

引理1.8 (elementary operations). If the functions $f, g : (X, \mathcal{M}) \to \mathbb{R}$ are measurable, then so are the functions

- (i) fq and $af + bq, a, b \in \mathbb{R}$,
- (ii) f/g when $g \neq 0$ on X.

 $\mathbf{\overline{f}}$ **/** $\mathbf{\overline{H}}$ **1.9** (simple approximation). For any measurable function $f \geq 0$ on (X, \mathcal{M}) , there exist some simple, measurable functions $f_1, f_2, \ldots : X \to \mathbb{R}^+$ with $f_n \uparrow f$.

2.2-2.3 Integration

- S^+ : the set of non-negative simple measurable functions.
- $\overline{\mathcal{L}}$: the space of all measurable functions $f : X \mapsto \overline{R}$.

定义1.10. Let $f = \sum_{i=1}^{n} a_i I_{A_i}$ ∈ S^+ , where $a_i \in \mathbb{R}^+$, $A_i \in \mathcal{M}$. Define

$$
\int_{\Omega} f d\mu = \sum_{i=1}^{n} a_i \mu(A_i).
$$
\n(1.4)

令题1.11. Let $f_n, g_n, f, g \in S^+$.

- (1) $\mu(I_A) = \mu(A), \forall A \in \mathcal{M};$
- (2) $\mu(\alpha f) = \alpha \mu(f), \forall \alpha \in \mathbb{R}^+;$
- (3) $\mu(f+q) = \mu(f) + \mu(q);$
- (4) $f \leq q \Rightarrow \mu(f) \leq \mu(q);$
- (5) $f_n \downarrow f, \mu(f_1) < \infty \Rightarrow \mu(f_n) \downarrow \mu(f);$
- (6) $f_n \uparrow f \Rightarrow \mu(f_n) \uparrow \mu(f);$
- (7) $f_n \uparrow$, $g_n \uparrow$, $\lim_{n\to\infty} f_n \leq \lim_{n\to\infty} g_n \Rightarrow \lim_{n\to\infty} \mu(f_n) \leq \lim_{n\to\infty} \mu(g_n)$.

 \mathcal{R} **₹ 1.12.** To extend the integral to general measurable functions $f \geq 0$, we choose some simple measurable functions f_1, f_2, \ldots with $0 \le f_n \uparrow f$, and define

$$
\mu(f) = \lim_{n} \mu(f_n).
$$

We need to show that the limit is independent of the choice of approximating sequence $(f_n).$

 \mathbf{H} **#1.13** (consistence). Let f, f_1, f_2, \ldots and g be measurable functions on a measure space (X, \mathcal{M}, μ) , where all but f are simple. Then

$$
0 \le f_n \uparrow f \atop 0 \le g \le f \quad \} \Rightarrow \mu(g) \le \lim_{n \to \infty} \mu(f_n).
$$

定理1.14 (monotone convergence, Levi). For any measurable functions f, f_1, f_2, \ldots on (X, \mathcal{M}, μ) , we have

 $0 \leq f_n \uparrow f \Rightarrow \mu f_n \uparrow \mu f$

 $\overline{\mathbf{A}}$ **II.15** (Fatou). For any measurable functions $f_1, f_2, \ldots \geq 0$ on (S, \mathcal{M}, μ) , we have

$$
\liminf_{n \to \infty} \mu f_n \ge \mu \liminf_{n \to \infty} f_n.
$$

定理1.16 (extended dominated convergence, Lebesgue). Let f, f_1, f_2, \ldots and $g, g_1, g_2, \ldots \geq$ 0 be measurable functions on (X, \mathcal{M}, μ) . Then

$$
\begin{aligned}\nf_n &\to f \\
|f_n| &\le g_n \to g \\
\mu g_n &\to \mu g < \infty\n\end{aligned}\n\Rightarrow \mu f_n \to \mu f.
$$

2.4 Modes of convergence

 \mathcal{R} **X1.17.** Let (X, \mathcal{M}, μ) be a measure space, and let f and $(f_n)_{n>1}$ be real-valued M -measurable function on X.

• ${f_n}$ converges to f **almost uniformly** if for $\forall \varepsilon > 0$, $\exists N \in \mathcal{M}$, $\mu(N) < \varepsilon$ such that

$$
\lim_{n \to \infty} \sup_{x \in N^c} |f_n(x) - f(x)| = 0.
$$
\n(1.5)

 $\mathbf{\hat{\Xi}} \mathbf{\Xi}$ 1.18. Let (X, \mathcal{M}, μ) be a measure space, and let f and $(f_n)_{n>1}$ be real-valued M -measurable function on X.

• $f_n \stackrel{a.e.}{\rightarrow} f$, if and only if $\forall \varepsilon > 0$

$$
\mu\left(\bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}\left[|f_i-f|\geq\varepsilon\right]\right)=0.
$$
\n(1.6)

• $f_n \stackrel{a.un.}{\rightarrow} f$, if and only if $\forall \varepsilon > 0$

$$
\lim_{n \to \infty} \mu\left(\bigcup_{i=n}^{\infty} [|f_n - f| \ge \varepsilon] \right) = 0. \tag{1.7}
$$

• $f_n \stackrel{\mu}{\rightarrow} f$, if and only if for any subsequence $(f_{n'})$, there exists its subsequence $f_{n'_k}$ such that

$$
f_{n'_k} \stackrel{a.un.}{\to} f. \tag{1.8}
$$

定理1.19. Let (X, \mathcal{M}, μ) be a measure space.

$$
f_n \xrightarrow{a.un.} f \Rightarrow f_n \xrightarrow{a.e.} f; \quad f_n \xrightarrow{a.un.} f \Rightarrow f_n \xrightarrow{\mu} f.
$$
 (1.9)

• If μ is finite, then

•

$$
f_n \xrightarrow{a.e} f \Leftrightarrow f_n \xrightarrow{a. un.} f. \tag{1.10}
$$

• If $f_n \stackrel{\mu}{\rightarrow} f$, there exists a subsequence f_{n_k} such that $f_{n_k} \stackrel{a.e.}{\rightarrow} f$.

2.5 Product measures

Let (X, \mathcal{M}, μ) , (Y, \mathcal{N}, ν) be two measure spaces. Define

$$
\mathcal{C} := \{ A \times B : A \in \mathcal{M}, B \in \mathcal{N} \},\tag{1.11}
$$

$$
\pi(A \times B) := \mu(A)\nu(B). \tag{1.12}
$$

 $\hat{\varphi}$ 5.20. π is σ -additive on C.

If $E \subset X \times Y$, for $x \in X$ and $y \in Y$ we define the x-section E_x and the y-section E^y of E by

$$
E_x = \{ y \in Y : (x, y) \in E \}, \quad E^y = \{ x \in X : (x, y) \in E \}.
$$

Also, if f is a function on $X \times Y$ we define the x-section f_x and the y-section f^y of f by

$$
f_x(y) = f^y(x) = f(x, y)
$$

 $\hat{\mathbf{\Phi}} = \mathbf{\Phi} \mathbf{\Phi} \mathbf{1.21.}$ **a.** If $E \in \mathcal{M} \times \mathcal{N}$, then $E_x \in \mathcal{N}$ for all $x \in X$ and $E^y \in \mathcal{M}$ for all $y \in Y$.

b. If f is $M \otimes N$ -measurable, then f_x is N -measurable for all $x \in X$ and f^y is M -measurable for all $y \in Y$.

 $\mathbf{\mathcal{F}}\mathbf{\mathcal{H}}1.22.$ Suppose (X,\mathcal{M},μ) and (Y,\mathcal{N},ν) are σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$ N, then the functions $x \mapsto \nu(E_x)$ and $y \mapsto \mu(E^y)$ are measurable on X and Y, respectively, and

$$
\mu \times \nu(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y).
$$

 $\mathbf{\vec{\pi}}\mathbf{\ddot{\Xi}}1.23$ (Fubini-Tonelli Theorem). Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ− finite measure spaces.

a. (Tonelli) If $f \in L^+(X \times Y)$, then the functions $g(x) = \int f_x d\nu$ and $h(y) =$ $\int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$, respectively, and

$$
\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x) = \int \left[\int f(x, y) d\mu(x) \right] d\nu(y). \tag{1.13}
$$

b. (Fubini) If $f \in L^1(\mu \times \nu)$, then $f_x \in L^1(\nu)$ for a.e. $x \in X, f^y \in L^1(\mu)$ for a.e. $y \in Y$, the a.e.-defined functions $g(x) = \int f_x d\nu$ and $h(x) = \int f^y d\nu$ are in $L^1(\mu)$ and $L^1(\nu)$, respectively, and [\(1.13\)](#page-4-0) holds.

作业 P_{39} 25, 26; P_{48} 2, 5; P_{59} 21; P_{69} 49;