1 第12教学周11.21

1.3 Regularity and Fourier series

定理1.1. Let $f \in L^1(\mathbb{T})$ and assume that $\widehat{f}(n) = -\widehat{f}(-n) \ge 0$. Then

$$\sum_{n>0} \frac{1}{n}\hat{f}(n) < \infty.$$

推论1.2. If $a_n > 0$, $\sum a_n/n = \infty$, then $\sum a_n \sin nt$ is not a Fourier series.

Smoothness and Fourier coefficients

定理1.3. If $f \in L^1(\mathbb{T})$ is absolutely continuous, then $\widehat{f}(n) = o(1/n)$.

If f is k-times differentiable, and $f^{(k-1)}$ is absolutely continuous, then

$$|\hat{f}(n)| \le \min_{0 \le j \le k} \frac{\left\| f^{(j)} \right\|_{L^1}}{|n|^j}.$$

If f is infinitely differentiable, then

$$|\hat{f}(n)| \le \min_{0\le j} \frac{\left\|f^{(j)}\right\|_{L^1}}{|n|^j}.$$

If
$$f \in C^{\alpha}(\mathbb{T})$$
, then $\hat{f}(n) = O(n^{-\alpha})$.

ℓ火1.4. A function f is analytic on \mathbb{T} if in a neighborhood of every $t_0 \in \mathbb{T}$, f(t) can be represented by a power series (of the form $\sum_{n=0}^{\infty} a_n (t - t_0)^n$).

Show that f is analytic if, and only if, f is infinitely differentiable on \mathbb{T} and there exists a number R such that

$$\sup_{t} \left| f^{(n)}(t) \right| \le n! R^n, \quad n > 0.$$

Show that f is analytic on \mathbb{T} if, and only if, there exist constants K > 0 and a > 0 such that $|\hat{f}(j)| \leq Ke^{-a|j|}$.

 $\notin \mathfrak{L}1.5.$ Gevrey class. $f \in \mathcal{G}_s$, if there exist constants K > 0 and a > 0 such that

$$|\widehat{f}(n)| \le K e^{-a|n|^{\frac{1}{s}}}.$$
(1.1)

 H^s Sobolev space

 $\mathfrak{z} \mathbf{X1.6.}$ For any $s \in \mathbb{R}$ define the Hilbert space $H^{s}(\mathbb{T})$ by means of the norm

$$||f||_{H^s}^2 := |\hat{f}(0)|^2 + \sum_{n \in \mathbb{Z}} |n|^{2s} |\hat{f}(n)|^2$$

定理1.7. For any $1 \ge \alpha > 0$ one has $C^{\alpha}(\mathbb{T}) \hookrightarrow H^{\beta}(\mathbb{T})$ for arbitrary $0 < \beta < \alpha$. In particular, for any $f \in C^{\alpha}(\mathbb{T})$ with $\alpha > \frac{1}{2}$ one has

$$\sum_{n\in\mathbb{Z}}|\hat{f}(n)|<\infty$$

and thus $C^{\alpha}(\mathbb{T}) \hookrightarrow \mathbb{A}(\mathbb{T})$ for any $\alpha > \frac{1}{2}$.

Introduce a norm to $A(\mathbb{T})$ by

$$||f||_{A(\mathbb{T})} = \sum_{-\infty}^{\infty} |\hat{f}(n)|.$$

引理1.8. Assume that $f, g \in A(\mathbb{T})$. Then $fg \in A(\mathbb{T})$ and

 $||fg||_{A(\mathbb{T})} \le ||f||_{A(\mathbb{T})} ||g||_{A(\mathbb{T})}.$

1.4 Fourier coefficient of Borel measure

定理1.9. (Parseval's formula). Let $f \in C(\mathbb{T}), \mu \in \mathcal{M}(\mathbb{T})$; then

$$\langle f, \mu \rangle = \lim_{N \to \infty} \sum_{-N}^{N} \left(1 - \frac{|n|}{N+1} \right) \hat{f}(n) \overline{\hat{\mu}(n)}.$$

推论1.10 (Uniqueness theorem). If $\hat{\mu}(n) = 0$ for all n, then $\mu = 0$.

定理1.11. Let $\{a_n\}_{n=-\infty}^{\infty}$ be a sequence of complex numbers. Then the following two conditions are equivalent:

(a) There exists $\mu \in \mathcal{M}(\mathbb{T}), \|\mu\| \leq C$, such that $\hat{\mu}(n) = a_n$ for all n.

(b) For all trigonometric polynomials P

$$\left|\sum \hat{P}(n)\overline{a_n}\right| \le C \|P\|_{C(\mathbb{T})}.$$

推论1.12. A trigonometric series $S \sim \sum a_n e^{int}$ is the Fourier series of some $\mu \in \mathcal{M}(\mathbb{T}), \|\mu\|_{var} \leq C$, if, and only if,

$$||K_N * S|| \le C, \quad \forall N.$$

1.5 Higher dimension

令题1.13. The space of trigonometric polynomials is dense in $C(\mathbb{T}^d)$, and one has Parseval's identity for $L^2(\mathbb{T}^d)$, i.e.,

$$||f||_2^2 = \sum_{\nu \in \mathbb{Z}^d} |\hat{f}(\nu)|^2 \quad \forall f \in L^2 \left(\mathbb{T}^d\right).$$

If $f \in C^{\infty}(\mathbb{T}^d)$ then the Fourier series associated with f converges uniformly to f irrespective of the way in which the partial sums are formed.

The Fourier transform on \mathbb{R}^d

1.1 Basic definitions: Fourier transform, Schwartz space

 $\mathcal{E} \ \mathcal{L} 1.14$. Definition 4.2 The Schwartz space $\mathcal{S}(\mathbb{R}^d)$ is defined as the collection of all functions in $C^{\infty}(\mathbb{R}^d)$ that decay rapidly, together with all derivatives. In other words, $f \in \mathcal{S}(\mathbb{R}^d)$ if and only if $f \in C^{\infty}(\mathbb{R}^d)$ and

$$x^{\alpha}\partial^{\beta}f(x) \in L^{\infty}\left(\mathbb{R}^{d}\right) \quad \forall \alpha, \beta,$$

where α, β are arbitrary multi-indices. We introduce the following notion of convergence in $\mathcal{S}(\mathbb{R}^d)$: a sequence $f_n \in \mathcal{S}(\mathbb{R}^d)$ converges to $g \in \mathcal{S}(\mathbb{R}^d)$ if and only if

$$\left\|x^{\alpha}\partial^{\beta}\left(f_{n}-g\right)\right\|_{\infty} \to 0, \quad n \to \infty,$$

for all α, β .

命题1.15. The Fourier transform is a continuous operation from the Schwartz space into itself.

作业

 P_{239} 1, 2; P_{254} 14; P_{263} 28, 32;