1 第13教学周11.28

1.2 The inversion theorem and Plancherel theorem

命题1.1. For any $f \in \mathcal{S}(\mathbb{R}^d)$ one has

$$f(x) = \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} \hat{f}(\xi) d\xi \quad \forall x \in \mathbb{R}^d.$$

Moreover, $\forall f, g \in \mathcal{S}(\mathbb{R}^d)$,

$$\int \widehat{f}g = \int f\widehat{g},\tag{1.1}$$

$$\int f\overline{g} = \int \widehat{f}\widehat{g},\tag{1.2}$$

$$||f||_{L^2} = ||\widehat{f}||_{L^2}. \tag{1.3}$$

 \mathcal{R} X 1.2 (Tempered distribution). The dual of \mathcal{S} , denoted by \mathcal{S}' , is the space of tempered distributions. In other words, any $u \in \mathcal{S}'$ is a continuous functional on \mathcal{S} , and we write $\langle u, \phi \rangle$ for u applied to $\phi \in \mathcal{S}$. The space \mathcal{S}' is equipped with the weak-* topology. Thus, $u_n \to u$ in \mathcal{S}' if and only if $\langle u_n, \phi \rangle \to \langle u, \phi \rangle$ as $n \to \infty$ for every $\phi \in \mathcal{S}$.

Naturally, $L^p(\mathbb{R}^d) \hookrightarrow \mathcal{S}'(\mathbb{R}^d)$ by the rule

$$\langle f, \phi \rangle = \int_{\mathbb{R}^d} f(x)\phi(x)dx, \quad f \in L^p(\mathbb{R}^d), \phi \in \mathcal{S}(\mathbb{R}^d).$$

A linear functional u on S is continuous if and only if there exists an N such that

$$|\langle u, \phi \rangle| \le C \sum_{|\alpha|, |\beta| \le N} ||x^{\alpha} \partial^{\beta} \phi||_{\infty} \quad \forall \phi \in \mathcal{S}.$$

定义1.3. If $u \in S'$, we define

$$(\mathcal{F}u)(\varphi) =: u(\mathcal{F}\varphi). \tag{1.4}$$

Fourier transform on $L^1 + L^2$

• $f \in L^1$.

$$(\mathcal{F}f)(x) = \int_{\mathbb{D}^d} f(x)e^{-2\pi ix\cdot\xi} dx. \tag{1.5}$$

where $\mathcal{F}f$ is regarded as the generalize Fourier transform on $\mathcal{S}'(\mathbb{R}^d)$.

• $f \in L^2$. Choose $\{f_n\} \subset \mathcal{S}$ such that

$$\lim_{n \to \infty} ||f_n - f||_{L^2} = 0. \tag{1.6}$$

 $\bullet \ f \in L^1 + L^2.$

1.3 Poisson summation formula

ф த1.4. For any $f \in \mathcal{S}\left(\mathbb{R}^d\right)$ one has

$$\sum_{n \in \mathbb{Z}^d} f(n) = \sum_{v \in \mathbb{Z}^d} \hat{f}(v).$$

1.4 Sobolev spaces and inequalities

定义1.5. Sobolev spaces H^s and \dot{H}^s are defined in terms of the norms

$$||f||_{H^s} = ||\langle \xi \rangle^s \hat{f}||_2, \quad ||f||_{\dot{H}^s} = |||\xi|^s \hat{f}||_2$$

for any $s \in \mathbb{R}$ where $\langle \xi \rangle = \sqrt{1 + |\xi|^2}$.

These spaces are the completion of $\mathcal{S}(\mathbb{R}^d)$ under the norms. For the homogeneous space $\dot{H}^s(\mathbb{R}^d)$ one needs the restriction s > -d/2 since otherwise \mathcal{S} is not dense in this space.

引理1.6. For any $f \in H^s(\mathbb{R}^d)$ one has

$$||f||_p \le C(s)||f||_{H^s(\mathbb{R}^d)} \quad \forall 2 \le p \le \infty,$$

provided that s > d/2.

引理1.7 (Trace). Let $f \in \mathcal{S}$, x : k-dimension.

$$||f||_{L_x^{\infty}L_y^2} \lesssim ||f||_{H^s}, \quad s > \frac{k}{2}.$$
 (1.7)

1.5 Littlewood-Paley theory

Let $\chi(\xi) \in C_c^{\infty}(\mathbb{R}^n)$ be such that

$$\chi(\xi) = \begin{cases} 1, & |\xi| \le 1, \\ 0, & |\xi| \ge 2. \end{cases}$$

Define

$$\psi(\xi) = \chi(\xi) - \chi(2\xi),$$

$$\psi_j(\xi) = \psi\left(\frac{\xi}{2^j}\right), \quad \chi_j(\xi) = \chi_j(\frac{\xi}{2^j}).$$

Verify that

$$\sum_{j\in\mathbb{Z}}\psi_j(\xi)=1, \forall \xi\neq 0$$

定义1.8. We define Littlewood-Paley operators as projections on frequency space

$$P_k f = \mathcal{F}^{-1} \left(\psi_k \hat{f} \right),$$

$$P_{\leq k} f = \mathcal{F}^{-1} \left(\chi_k \hat{f} \right),$$

$$P_{>k} f = (I - P_{\leq k}) f.$$

$$f \sim \sum_{k \in \mathbb{Z}} P_k f$$

命题1.9. (1). $P_{\leq k}f \stackrel{\mathcal{S}}{\to} f$, as $k \to \infty$, $\forall f \in \mathcal{S}$.

(2).
$$P_{\leq k}f \stackrel{\mathcal{S}'}{\to} f$$
, as $k \to \infty$, $\forall f \in \mathcal{S}'$.

(3).
$$p \in [1, \infty)$$
. $P_{\leq k} f \stackrel{L^p}{\to} f$, as $k \to \infty$, $\forall f \in L^p$.

命题1.10 (Bernstein inequalities). Let $f \in \mathcal{S}$, $1 \le p \le q \le \infty$.

$$||P_{\leq k}f||_q \lesssim 2^{kn(\frac{1}{p}-\frac{1}{q})}||f||_p$$
 (1.8)

$$||P_k f||_q \lesssim 2^{kn(\frac{1}{p} - \frac{1}{q})} ||f||_p$$
 (1.9)

$$\|\nabla P_{\le k} f\|_p \lesssim 2^k \|f\|_p \tag{1.10}$$

$$||P_k f||_n \sim 2^{-k} ||\nabla P_k f||_n$$
 (1.11)

$$||P_{>k}f||_p \lesssim 2^{-k} ||\nabla f||_p \tag{1.12}$$

命题1.11 (GN inequality).

$$\|\partial^i f\|_{L^p} \lesssim \|f\|_{L^p}^{1-\frac{i}{m}} \|\partial^m f\|_{L^p}^{\frac{i}{m}}, \quad 0 \le i \le m.$$
 (1.13)

命题1.12 (Sobolev inequality).

$$||f||_{L^p} \lesssim ||f||_{\dot{H}^s}$$
 (1.14)

where

$$p \in [2, \infty), \quad s \in [0, \frac{d}{2}), \quad \frac{1}{p} = \frac{s}{d}.$$
 (1.15)

作业

- 1. 证明P.V. $\frac{1}{x} \in \mathcal{S}'(\mathbb{R})$, 计算 $\mathcal{F}(P.V. \frac{1}{x})$.
- 2. 计算广义Fourier变换

$$e^{i|x|^2}, d \ge 1. (1.16)$$

$$\frac{1}{1+|x|^2}$$
, $d=1, d=3$. (1.17)

- 3. $s \in (0,1), \chi(x) \in C_c^{\infty}(\mathbb{R}^d)$. 判断 $\mathcal{F}(\chi(x)|x|^s) \in L^1$?
- 4. $f \in \mathcal{S}(\mathbb{R}^d)$, $\mathrm{supp}(\hat{f}) \subset E \subset \mathbb{R}^d$,其中E是Borel可测,证

$$||f||_q \le |E|^{1/p-1/q} ||f||_p \quad \forall 1 \le p \le q \le \infty.$$

|E|是E的Lebesgue测度。