1 第11教学周11.14

1.1 Partial sums and Dirichlet kernel

let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ be the one-dimensional torus (in other words, the circle).

The space of continuous functions $C(\mathbb{T})$.

The space of Hölder continuous functions $C^{\alpha}(\mathbb{T})$ where $0 < \alpha \leq 1$.

The Lebesgue spaces $L^p(\mathbb{T})$ where $1 \leq p \leq \infty$.

The space of complex Borel measures on \mathbb{T} will be denoted by $\mathcal{M}(\mathbb{T})$.

Any $\mu \in \mathcal{M}(\mathbb{T})$ has associated with it a Fourier series

$$\mu \sim \sum_{n=-\infty}^{\infty} \hat{\mu}(n) e(nx)$$

where $e(x) := e^{2\pi i x}$ and

$$\hat{\mu}(n) := \int_0^1 e(-nx)\mu(dx) = \int_{\mathbb{T}} e(-nx)\mu(dx).$$

The symbol \sim is formal and simply means that the series on the righthand side is associated with μ .

If $\mu(dx) = f(x)dx$ where $f \in L^1(\mathbb{T})$, then we may write $\hat{f}(n)$ instead of $\hat{\mu}(n)$.

 $\mathfrak{Z} \mathfrak{L} 1.1$ (Dirichlet kernel). The partial sums of $f \in L^1(\mathbb{T})$ are defined as

$$S_N f(x) = \sum_{n=-N}^{N} \hat{f}(n) e(nx) = \sum_{n=-N}^{N} \int_{\mathbb{T}} e(-ny) f(y) dy e(nx)$$
$$= \int_{\mathbb{T}} \sum_{n=-N}^{N} e(n(x-y)) f(y) dy = \int_{\mathbb{T}} D_N(x-y) f(y) dy$$

where $D_N(x) := \sum_{n=-N}^{N} e(nx)$ is the Dirichlet kernel. In other words, we have shown that the partial sum operator S_N is given by convolution with the Dirichlet kernel D_N :

$$S_N f(x) = (D_N * f)(x).$$

练习1.2. Verify that, for each integer $N \ge 0$,

(1) $\int_{\mathbb{T}} D_N(t) dt = 1.$

(2)

$$D_N(x) = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}.$$

(3)

$$|D_N(x)| \le C \min\left(N, \frac{1}{|x|}\right)$$

(4)

$$C^{-1}\log N \le \|D_N\|_{L^1(\mathbb{T})} \le C\log N.$$

引理1.3 (Riemann-Lebesgue). If $f \in L^1(\mathbb{T})$ then $\hat{f}(n) \to 0$ as $n \to \infty$.

引理1.4 (Dini's criteria). If for some x, $\exists \delta > 0$, so that

$$\int_{|t|<\delta} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \infty, \tag{1.1}$$

then $\lim_{N\to\infty} S_N f(x) = f(x)$.

引理1.5 (Jordan's criteria). If f is a function of bounded variation in a neighbourhood of x, then then $\lim_{N\to\infty} S_N f(x) = \frac{1}{2} [f(x+0) + f(x-0)].$

1.2 Approximate identities and Fejér kernel

Setting

$$K_N := \frac{1}{N} \sum_{n=0}^{N-1} D_n,$$

where K_N is called the Fejér kernel, one therefore has $\sigma_N f = K_N * f$.

练习1.6. Let K_N be a Fejér kernel with N a positive integer. Verify that

$$\widehat{K}_N(n) = \left(1 - \frac{|n|}{N}\right)^+.$$

(2)

$$K_N(x) = \frac{1}{N} \left(\frac{\sin(N\pi x)}{\sin(\pi x)} \right)^2.$$

(3)

$$0 \le K_N(x) \le CN^{-1} \min(N^2, x^{-2})$$
.

定义1.7. The family $\{\Phi_N\}_{N=1}^{\infty} \subset L^{\infty}(\mathbf{T})$ forms an approximate identity provided that (1) $\int_0^1 \Phi_N(x) dx = 1$ for all N,

- (2) $\sup_N \int_0^1 |\Phi_N(x)| \, dx < \infty$,
- (3) for all $\delta > 0$ one has $\int_{|x|>\delta} |\Phi_N(x)| dx \to 0$ as $N \to \infty$.

命题1.8. For any approximate identity $\{\Phi_N\}_{N=1}^{\infty}$ one has the following.

- (i) If $f \in C(\mathbb{T})$ then $\|\Phi_N * f f\|_{\infty} \to 0$ as $N \to \infty$.
- (ii) If $f \in L^p(\mathbb{T})$, where $1 \le p < \infty$, then $\|\Phi_N * f f\|_p \to 0$ as $N \to \infty$.
- (iii) For any measure $\mu \in \mathcal{M}(\mathbb{T})$, one has

$$\Phi_N * \mu \rightharpoonup \mu, \quad N \to \infty,$$

in the weak-* sense.

推论1.9. The exponential family $\{e(nx)\}_{n\in\mathbb{Z}}$ satisfies the following properties.

(i) The trigonometric polynomials are dense in $C(\mathbb{T})$ in the uniform topology and in $L^p(\mathbb{T})$ for any $1 \leq p < \infty$.

(ii) For any $f \in L^2(\mathbb{T})$,

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2.$$

- (iii) The exponentials $\{e(nx)\}_{n\in\mathbb{Z}}$ form an orthonormal basis in $L^2(\mathbb{T})$.
- (iv) For all $f, g \in L^2(\mathbb{T})$ one has Parseval's identity,

$$\int_{\mathbb{T}} f(x)\bar{g}(x)dx = \sum_{n\in\mathbb{Z}} \hat{f}(n)\overline{\hat{g}(n)}.$$

Failure of convergence.

定理1.10. There exists a continuous function whose Fourier series diverges at a point. 命题1.11. The following statements are equivalent for any $1 \le p \le \infty$:

(i) for every
$$f \in L^p(\mathbb{T})$$
 (or $f \in C(\mathbb{T})$ if $p = \infty$) one has
 $\|S_N f - f\|_p \to 0 \text{ as } N \to \infty;$

(*ii*) $\sup_N \|S_N\|_{p\to p} < \infty$.

推论1.12. Fourier series do not converge on $C(\mathbb{T})$ and $L^1(\mathbb{T})$, i.e., there exists $f \in C(\mathbb{T})$ such that $||S_N f - f||_{\infty} \not\rightarrow 0$ and $g \in L^1(\mathbb{T})$ such that $||S_N g - g||_1 \not\rightarrow 0$ as $n \rightarrow \infty$.

1.3 Regularity and Fourier series

令题1.13 (Bernstein). Let f be a trigonometric polynomial with $\hat{f}(k) = 0$ for all |k| > n. Then

$$\|f'\|_p \le Cn\|f\|_p$$

for any $1 \le p \le \infty$. The constant C is absolute.

引理1.14. Let $\{a_n\}_{n\in\mathbb{Z}}$ be an even sequence of nonnegative numbers that tend to zero, which is convex in the following sense:

$$a_{n+1} + a_{n-1} - 2a_n \ge 0 \quad \forall n > 0.$$

Then there exists $f \in L^1(\mathbb{T})$ with $f \ge 0$ and $\hat{f}(n) = a_n$.

推论1.15. Suppose that $f \in L^1(\mathbb{T})$ satisfies $\hat{f}(j) = 0$ for all j with |j| < n. Then

$$\|f''\|_p \ge Cn^2 \|f\|_p$$

holds for all $1 \leq p \leq \infty$.

作业

 P_{269} 33, 34, 35, 36;