第六教学周10.10

3.2 The Lebesgue-Radon-Nikodym theorem

注 il.1.13.1. The decomposition $\nu = \lambda + \rho$ where $\lambda \perp \mu$ and $\rho \ll \mu$ is called the Lebesgue decomposition of ν with respect to μ .

i \sharp **i** ι **1.13.2.** In the case where $\nu \ll \mu$, we have that $d\nu = fd\mu$ for some f. This result is usually known as the Radon-Nikodym theorem, and f is called the Radon-Nikodym derivative of ν with respect to μ . We denote it by $d\nu/d\mu$:

$$d
u = \frac{d
u}{d\mu}d\mu$$

a. If $g \in L^1(\nu)$, then $g(d\nu/d\mu) \in L^1(\mu)$ and

$$\int g d\nu = \int g \frac{d\nu}{d\mu} d\mu$$

b. We have $\nu \ll \lambda$, and

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} \quad \lambda\text{-a.e.}$$

3.3 Complex measures

 $\mathfrak{E} \ \mathfrak{L} 1.15.$ A complex measure on a measurable space (X, \mathcal{M}) is a map $\nu : \mathcal{M} \to \mathbb{C}$ such that

- $\nu(\emptyset) = 0;$
- if $\{E_j\}$ is a sequence of disjoint sets in \mathcal{M} , then $\nu (\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \nu (E_j)$, where the series converges absolutely.

In particular, infinite values are not allowed, so a positive measure is a complex measure only if it is finite. Example: If μ is a positive measure and $f \in L^1(\mu)$, then $fd\mu$ is a complex measure.

定理1.16 (Lebesgue-Radon-Nikodym theorem). If ν is a complex measure and μ is a σ -finite positive measure on (X, \mathcal{M}) , there exist a complex measure λ and an $f \in L^1(\mu)$ such that $\lambda \perp \mu$ and $d\nu = d\lambda + fd\mu$. If also $\lambda' \perp \mu$ and $d\nu = d\lambda' + f'd\mu$, then $\lambda = \lambda'$ and $f = f' \mu$ -a.e.

3.4 Differentiation on Euclidean space

引理1.17 (Elementary version: Vitali covering). Suppose $\mathcal{B} = \{B_1, B_2, \ldots, B_N\}$ is a finite collection of open balls in \mathbb{R}^n . Then there exists a disjoint sub-collection $\{B_{j_i}\}_{i=1}^M$ of \mathcal{B} that satisfies

$$\bigcup_{l=1}^{N} B_l \subset \bigcup_{i=1}^{M} 3B_{j_i}.$$
(1.1)

 \mathfrak{Z} **L118.** A measurable function $f : \mathbb{R}^n \to \mathbb{C}$ is called locally integrable (with respect to Lebesgue measure) if $\int_K |f(x)| dx < \infty$ for every bounded measurable set $K \subset \mathbb{R}^n$.

We denote the space of locally integrable functions by L^1_{loc} . If $f \in L^1_{loc}$, $x \in \mathbb{R}^n$, and r > 0, we define $A_r f(x)$ to be the average value of f on B(r, x):

$$A_r f(x) = \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) dy.$$

If $f \in L^1_{loc}$, we define its Hardy-Littlewood maximal function Hf by

$$Hf(x) = \sup_{r>0} A_r |f|(x) = \sup_{r>0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y)| dy.$$

定理1.19 (The maximal theorem). There is a constant C > 0 such that for all $f \in L^1$ and all $\alpha > 0$,

$$m(\{x: Hf(x) > \alpha\}) \le \frac{C}{\alpha} \int |f(x)| dx.$$

定理1.20. If $f \in L^1_{\text{loc}}$, then $\lim_{r\to 0} A_r f(x) = f(x)$ for a.e. $x \in \mathbb{R}^n$.

This result can be rephrased as follows: If $f \in L^1_{\text{loc}}$,

$$\lim_{r \to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} [f(y) - f(x)] dy = 0 \text{ for a.e. } x.$$

Actually, something stronger is true. Let us define the Lebesgue set L_f of f to be

$$L_f = \left\{ x : \lim_{r \to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y) - f(x)| dy = 0 \right\}.$$

定理1.21. If $f \in L^1_{loc}$, then $m((L_f)^c) = 0$.

4.1 Topological spaces

Let X be a nonempty set.

 $\notin \& 1.22$ (Topological Space). A topology on X is a family \mathcal{T} of subsets of X that satisfies the following conditions:

- $\emptyset, X \in \mathcal{T}$.
- Closed under finite intersections: $U, V \in \mathcal{T} \Longrightarrow U \cap V \in \mathcal{T}$.
- Closed under arbitrary unions: $\{U_i\}_{i\in I} \subset \mathcal{T} \Longrightarrow \bigcup_{i\in I} U_i \in \mathcal{T}.$

The pair (X, \mathcal{T}) is called a topological space.

If X is any nonempty set, $\mathcal{P}(X)$ and $\{\emptyset, X\}$ are topologies on X. They are called the discrete topology and the trivial (or indiscrete) topology, respectively.

If X is a metric space, the collection of all open sets with respect to the metric is a topology on X.

5.1 Normed vector spaces

Let K denote either \mathbb{R} or \mathbb{C} , and let X be a vector space over K.

 $\mathfrak{E} \mathbf{X} \mathbf{1.23.}$ A seminorm on X is a function $x \mapsto ||x||$ from X to $[0, \infty)$ such that

- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$ (the triangle inequality),
- $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $\lambda \in K$.

The second property clearly implies that ||0|| = 0. A seminorm such that ||x|| = 0only when x = 0 is called a norm, and a vector space equipped with a norm is called a normed vector space (or normed linear space).

 $\notin \& 1.24$ (Banach space). A normed vector space that is complete with respect to the norm metric is called a Banach space.

6.1 Basic theory of L^p spaces

• Let $1 \le p \le \infty$; we denote by p' the conjugate exponent,

$$\frac{1}{p} + \frac{1}{p'} = 1$$

Let (X, \mathcal{M}, μ) denote a measure space.

 $\notin \& 1.25$ (L^p spaces). Let 1 ; If f is a measurable function on X, we define

$$\|f\|_p = \left[\int |f|^p d\mu\right]^{1/p}$$

(allowing the possibility that $||f||_p = \infty$), and we define

$$L^p(X, \mathcal{M}, \mu) = \{f : X \to \mathbb{C} : f \text{ is measurable and } \|f\|_p < \infty\}$$

We abbreviate $L^p(X, \mathcal{M}, \mu)$ by $L^p(\mu), L^p(X)$, or simply L^p when this will cause no confusion.

定义1.26. We set

$$L^{\infty}(X) = \left\{ f: X \to \mathbb{R} \middle| \begin{array}{c} f \text{ is measurable and there is a constant } C \\ \text{such that } |f(x)| \le C \text{ a.e. on } X \end{array} \right\}$$

with

$$|f||_{L^{\infty}} = ||f||_{\infty} = \inf\{C; |f(x)| \le C \text{ a.e. on } X\}$$

注记1.26.1. If $f \in L^{\infty}$ then we have

$$|f(x)| \le ||f||_{\infty} \quad a.e. \text{ on } X.$$

Indeed, there exists a sequence C_n such that $C_n \to ||f||_{\infty}$ and for each $n, |f(x)| \leq C_n$ a.e. on X. Therefore $|f(x)| \leq C_n$ for all $x \in X \setminus E_n$, with $|E_n| = 0$.

引理1.27 (Young's inequality).

$$ab \leq \frac{1}{p}a^p + \frac{1}{p'}b^{p'} \quad \forall a \geq 0, \quad \forall b \geq 0.$$

Equivalently,

$$a^{\lambda}b^{1-\lambda} \leq \lambda a + (1-\lambda)b, \quad \forall a \geq 0, \quad \forall b \geq 0, \quad \lambda \in (0,1),$$

with equality iff a = b.

定理1.28 (Hölder's inequality). Assume that $f \in L^p$ and $g \in L^{p'}$ with $1 \le p \le \infty$. Then $fg \in L^1$ and

$$\int |fg| \le \|f\|_p \|g\|_{p'}.$$

注记1.28.1 (Extension of Hölder's inequality). Assume that f_1, f_2, \ldots, f_k are functions such that

$$f_i \in L^{p_i}, 1 \le i \le k \text{ with } \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_k} \le 1.$$

Then the product $f = f_1 f_2 \cdots f_k$ belongs to L^p and

$$||f_1 f_2 \cdots f_k||_p \le ||f_1||_{p_1} ||f_2||_{p_2} \cdots ||f_k||_{p_k}.$$

In particular, if $f \in L^p \cap L^q$ with $1 \le p \le q \le \infty$, then $f \in L^r$ for all $r, p \le r \le q$, and the following "interpolation inequality" holds:

$$||f||_r \le ||f||_p^{\alpha} ||f||_q^{1-\alpha}, \text{ where } \frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}, \quad 0 \le \alpha \le 1.$$

推论1.29. If A is any set and $0 , then <math>l^p(A) \subset l^q(A)$ and $||f||_q \le ||f||_p$. 推论1.30. If $\mu(X) < \infty$ and $0 , then <math>L^p(\mu) \supset L^q(\mu)$ and

$$||f||_p \le ||f||_q \mu(X)^{(1/p) - (1/q)}.$$

引理1.31 (Triangle inequality/ Minkowski inequality). For $1 \le p \le \infty$, and $f, g \in L^p$, we have

$$||f + g||_p \le ||f||_p + ||g||_p.$$
(1.2)

In particular, L^p is a vector space and $\|\cdot\|_p$ is a norm for any $p, 1 \leq p \leq \infty$.

定理1.32. For $1 \le p < \infty$, L^p is a Banach space.

6.2 Reflexivity. Separability. Dual of L^p spaces

 $\not\in \& 1.33$ (Separable metric spaces). We say that a metric space E is separable if there exists a subset $D \subset E$, that is countable and dense.

 $\not\in \&1.34$. The measurable space (X, \mathcal{M}) (or the σ -algebra \mathcal{M}) is called separable if there exists a countable family \mathcal{C} such that $\sigma(\mathcal{C}) = \mathcal{M}$.

 $\mathfrak{E} \& 1.35$. The measure space (X, \mathcal{M}, μ) is called μ -separable, if there exists a separable σ -algebra $\mathcal{M}_0 \subset \mathcal{M}$ such that $\forall A \in \mathcal{M}, \exists B \in \mathcal{M}_0, \mu(A\Delta B) = 0$.

注记1.35.1. $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n), m)$ is m-separable.

定理1.36. Assume that (X, \mathcal{M}, μ) is a μ-separable measure space, and μ is σ-finite. Then $L^p(X)$ is separable for any $p, 1 \leq p < \infty$. Usually, $L^{\infty}(X)$ is not separable.

作业P₁₈₇ 7, 9, 10, 15;