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3.2 The Lebesgue-Radon-Nikodym theorem

555PPP1.13.1. The decomposition ν = λ + ρ where λ ⊥ µ and ρ � µ is called the
Lebesgue decomposition of ν with respect to µ.

555PPP1.13.2. In the case where ν � µ, we have that dν = fdµ for some f . This result
is usually known as the Radon-Nikodym theorem, and f is called the Radon-Nikodym
derivative of ν with respect to µ. We denote it by dν/dµ :

dν =
dν

dµ
dµ

···KKK1.14. Suppose that ν is a σ-finite signed measure and µ, λ are σ-finite measures
on (X,M) such that ν � µ and µ� λ.

a. If g ∈ L1(ν), then g(dν/dµ) ∈ L1(µ) and∫
gdν =

∫
g
dν

dµ
dµ.

b. We have ν � λ, and

dν

dλ
=
dν

dµ

dµ

dλ
λ-a.e.

3.3 Complex measures

½½½ÂÂÂ1.15. A complex measure on a measurable space (X,M) is a map ν : M → C
such that

• ν(∅) = 0;

• if {Ej} is a sequence of disjoint sets in M, then ν (
⋃∞

1 Ej) =
∑∞

1 ν (Ej), where
the series converges absolutely.

In particular, infinite values are not allowed, so a positive measure is a complex
measure only if it is finite. Example: If µ is a positive measure and f ∈ L1(µ), then
fdµ is a complex measure.

½½½nnn1.16 (Lebesgue-Radon-Nikodym theorem). If ν is a complex measure and µ is a
σ-finite positive measure on (X,M), there exist a complex measure λ and an f ∈ L1(µ)
such that λ ⊥ µ and dν = dλ + fdµ. If also λ′ ⊥ µ and dν = dλ′ + f ′dµ, then λ = λ′

and f = f ′ µ-a.e.
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3.4 Differentiation on Euclidean space

ÚÚÚnnn1.17 (Elementary version: Vitali covering). Suppose B = {B1, B2, . . . , BN} is a
finite collection of open balls in Rn. Then there exists a disjoint sub-collection {Bji}

M
i=1

of B that satisfies

N⋃
l=1

Bl ⊂
M⋃
i=1

3Bji . (1.1)

½½½ÂÂÂ1.18. A measurable function f : Rn → C is called locally integrable (with respect
to Lebesgue measure) if

∫
K
|f(x)|dx <∞ for every bounded measurable set K ⊂ Rn.

We denote the space of locally integrable functions by L1
loc. If f ∈ L1

loc , x ∈ Rn,
and r > 0, we define Arf(x) to be the average value of f on B(r, x) :

Arf(x) =
1

m(B(r, x))

∫
B(r,x)

f(y)dy.

If f ∈ L1
loc , we define its Hardy-Littlewood maximal function Hf by

Hf(x) = sup
r>0

Ar|f |(x) = sup
r>0

1

m(B(r, x))

∫
B(r,x)

|f(y)|dy.

½½½nnn1.19 (The maximal theorem). There is a constant C > 0 such that for all f ∈ L1

and all α > 0,

m({x : Hf(x) > α}) ≤ C

α

∫
|f(x)|dx.

½½½nnn1.20. If f ∈ L1
loc, then limr→0Arf(x) = f(x) for a.e. x ∈ Rn.

This result can be rephrased as follows: If f ∈ L1
loc ,

lim
r→0

1

m(B(r, x))

∫
B(r,x)

[f(y)− f(x)]dy = 0 for a.e. x.

Actually, something stronger is true. Let us define the Lebesgue set Lf of f to be

Lf =

{
x : lim

r→0

1

m(B(r, x))

∫
B(r,x)

|f(y)− f(x)|dy = 0

}
.

½½½nnn1.21. If f ∈ L1
loc, then m ((Lf )

c) = 0.
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4.1 Topological spaces

Let X be a nonempty set.

½½½ÂÂÂ1.22 (Topological Space). A topology on X is a family T of subsets of X that
satisfies the following conditions:

• ∅, X ∈ T .

• Closed under finite intersections: U , V ∈ T =⇒ U ∩ V ∈ T .

• Closed under arbitrary unions: {Ui}i∈I ⊂ T =⇒
⋃
i∈I Ui ∈ T .

The pair (X, T ) is called a topological space.

If X is any nonempty set, P(X) and {∅, X} are topologies on X. They are called
the discrete topology and the trivial (or indiscrete) topology, respectively.

If X is a metric space, the collection of all open sets with respect to the metric is
a topology on X.

5.1 Normed vector spaces

Let K denote either R or C, and let X be a vector space over K.

½½½ÂÂÂ1.23. A seminorm on X is a function x 7→ ‖x‖ from X to [0,∞) such that

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X (the triangle inequality),

• ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ K.

The second property clearly implies that ‖0‖ = 0. A seminorm such that ‖x‖ = 0
only when x = 0 is called a norm, and a vector space equipped with a norm is called a
normed vector space (or normed linear space).

½½½ÂÂÂ1.24 (Banach space). A normed vector space that is complete with respect to the
norm metric is called a Banach space.

6.1 Basic theory of Lp spaces

• Let 1 ≤ p ≤ ∞; we denote by p′ the conjugate exponent,

1

p
+

1

p′
= 1.
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Let (X,M, µ) denote a measure space.

½½½ÂÂÂ1.25 (Lp spaces). Let 1 < p <∞; If f is a measurable function on X, we define

‖f‖p =

[∫
|f |pdµ

]1/p
(allowing the possibility that ‖f‖p =∞ ), and we define

Lp(X,M, µ) = {f : X → C : f is measurable and ‖f‖p <∞}

We abbreviate Lp(X,M, µ) by Lp(µ), Lp(X), or simply Lp when this will cause no
confusion.

½½½ÂÂÂ1.26. We set

L∞(X) =

{
f : X → R

∣∣∣∣ f is measurable and there is a constant C
such that |f(x)| ≤ C a.e. on X

}
with

‖f‖L∞ = ‖f‖∞ = inf{C; |f(x)| ≤ C a.e. on X}.

555PPP1.26.1. If f ∈ L∞ then we have

|f(x)| ≤ ‖f‖∞ a.e. on X.

Indeed, there exists a sequence Cn such that Cn → ‖f‖∞ and for each n, |f(x)| ≤ Cn
a.e. on X. Therefore |f(x)| ≤ Cn for all x ∈ X\En, with |En| = 0.

ÚÚÚnnn1.27 (Young’s inequality).

ab ≤ 1

p
ap +

1

p′
bp

′ ∀a ≥ 0, ∀b ≥ 0.

Equivalently,

aλb1−λ ≤ λa+ (1− λ)b, ∀a ≥ 0, ∀b ≥ 0, λ ∈ (0, 1),

with equality iff a = b.

½½½nnn1.28 (Hölder’s inequality). Assume that f ∈ Lp and g ∈ Lp
′

with 1 ≤ p ≤ ∞.
Then fg ∈ L1 and ∫

|fg| ≤ ‖f‖p‖g‖p′ .

555PPP1.28.1 (Extension of Hölder’s inequality). Assume that f1, f2, . . . , fk are functions
such that

fi ∈ Lpi , 1 ≤ i ≤ k with
1

p
=

1

p1
+

1

p2
+ · · ·+ 1

pk
≤ 1.

6



Then the product f = f1f2 · · · fk belongs to Lp and

‖f1f2 · · · fk‖p ≤ ‖f1‖p1 ‖f2‖p2 · · · ‖fk‖pk .

In particular, if f ∈ Lp∩Lq with 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr for all r, p ≤ r ≤ q,
and the following ”interpolation inequality” holds:

‖f‖r ≤ ‖f‖αp‖f‖1−αq , where
1

r
=
α

p
+

1− α
q

, 0 ≤ α ≤ 1.

íííØØØ1.29. If A is any set and 0 < p < q ≤ ∞, then lp(A) ⊂ lq(A) and ‖f‖q ≤ ‖f‖p.

íííØØØ1.30. If µ(X) <∞ and 0 < p < q ≤ ∞, then Lp(µ) ⊃ Lq(µ) and

‖f‖p ≤ ‖f‖qµ(X)(1/p)−(1/q).

ÚÚÚnnn1.31 (Triangle inequality/ Minkowski inequality). For 1 ≤ p ≤ ∞, and f , g ∈ Lp,
we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (1.2)

In particular, Lp is a vector space and ‖ · ‖p is a norm for any p, 1 ≤ p ≤ ∞.

½½½nnn1.32. For 1 ≤ p <∞, Lp is a Banach space.

6.2 Reflexivity. Separability. Dual of Lp spaces

½½½ÂÂÂ1.33 (Separable metric spaces). We say that a metric space E is separable if there
exists a subset D ⊂ E, that is countable and dense.

½½½ÂÂÂ1.34. The measurable space (X,M) (or the σ-algebra M) is called separable if
there exists a countable family C such that σ(C) =M.

½½½ÂÂÂ1.35. The measure space (X,M, µ) is called µ-separable, if there exists a separable
σ-algebra M0 ⊂M such that ∀A ∈M, ∃B ∈M0, µ(A∆B) = 0.

555PPP1.35.1. (Rn,L(Rn),m) is m-separable.

½½½nnn1.36. Assume that (X,M, µ) is a µ-separable measure space, and µ is σ-finite.
Then Lp(X) is separable for any p, 1 ≤ p <∞. Usually, L∞(X) is not separable.
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