第六教学周10.10

3.2 The Lebesgue-Radon-Nikodym theorem

 \hat{f} **E1.13.1.** The decomposition $\nu = \lambda + \rho$ where $\lambda \perp \mu$ and $\rho \ll \mu$ is called the Lebesgue decomposition of ν with respect to μ .

 \mathcal{F} **1.13.2.** In the case where $\nu \ll \mu$, we have that $d\nu = f d\mu$ for some f. This result is usually known as the Radon-Nikodym theorem, and f is called the Radon-Nikodym derivative of ν with respect to μ . We denote it by $d\nu/d\mu$:

$$
d\nu = \frac{d\nu}{d\mu} d\mu
$$

 $\hat{\varphi}$ 5.1.14. Suppose that v is a σ-finite signed measure and μ , λ are σ-finite measures on (X, \mathcal{M}) such that $\nu \ll \mu$ and $\mu \ll \lambda$.

a. If $g \in L^1(\nu)$, then $g(d\nu/d\mu) \in L^1(\mu)$ and

$$
\int g d\nu = \int g \frac{d\nu}{d\mu} d\mu.
$$

b. We have $\nu \ll \lambda$, and

$$
\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu}\frac{d\mu}{d\lambda} \quad \lambda \text{-}a.e.
$$

3.3 Complex measures

 \mathcal{R} X1.15. A complex measure on a measurable space (X,\mathcal{M}) is a map $\nu : \mathcal{M} \to \mathbb{C}$ such that

- $\nu(\emptyset) = 0$;
- if ${E_j}$ is a sequence of disjoint sets in M, then $\nu(\bigcup_{1}^{\infty} E_j) = \sum_{1}^{\infty} \nu(E_j)$, where the series converges absolutely.

In particular, infinite values are not allowed, so a positive measure is a complex measure only if it is finite. Example: If μ is a positive measure and $f \in L^1(\mu)$, then $fd\mu$ is a complex measure.

定理1.16 (Lebesgue-Radon-Nikodym theorem). If v is a complex measure and μ is a σ-finite positive measure on (X, \mathcal{M}) , there exist a complex measure λ and an $f \in L^1(\mu)$ such that $\lambda \perp \mu$ and $d\nu = d\lambda + f d\mu$. If also $\lambda' \perp \mu$ and $d\nu = d\lambda' + f'd\mu$, then $\lambda = \lambda'$ and $f = f'$ μ -a.e.

3.4 Differentiation on Euclidean space

 \mathcal{F} **#1.17** (Elementary version: Vitali covering). Suppose $\mathcal{B} = \{B_1, B_2, \ldots, B_N\}$ is a finite collection of open balls in \mathbb{R}^n . Then there exists a disjoint sub-collection $\{B_{j_i}\}_{i=1}^M$ $i=1$ of B that satisfies

$$
\bigcup_{l=1}^{N} B_l \subset \bigcup_{i=1}^{M} 3B_{j_i}.\tag{1.1}
$$

 \mathcal{R} **1.18.** A measurable function $f : \mathbb{R}^n \to \mathbb{C}$ is called locally integrable (with respect to Lebesgue measure) if $\int_K |f(x)| dx < \infty$ for every bounded measurable set $K \subset \mathbb{R}^n$.

We denote the space of locally integrable functions by L^1_{loc} . If $f \in L^1_{loc}$, $x \in \mathbb{R}^n$, and $r > 0$, we define $A_r f(x)$ to be the average value of f on $B(r, x)$:

$$
A_r f(x) = \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) dy.
$$

If $f \in L^1_{loc}$, we define its Hardy-Littlewood maximal function H f by

$$
Hf(x) = \sup_{r>0} A_r |f|(x) = \sup_{r>0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y)| dy.
$$

定理1.19 (The maximal theorem). There is a constant $C > 0$ such that for all $f \in L^1$ and all $\alpha > 0$,

$$
m({x : Hf(x) > \alpha}) \leq \frac{C}{\alpha} \int |f(x)| dx.
$$

定理1.20. If $f \in L^1_{loc}$, then $\lim_{r\to 0} A_r f(x) = f(x)$ for a.e. $x \in \mathbb{R}^n$.

This result can be rephrased as follows: If $f \in L^1_{loc}$,

$$
\lim_{r \to 0} \frac{1}{m(B(r, x))} \int_{B(r, x)} [f(y) - f(x)] dy = 0
$$
 for a.e. x.

Actually, something stronger is true. Let us define the Lebesgue set L_f of f to be

$$
L_f = \left\{ x : \lim_{r \to 0} \frac{1}{m(B(r, x))} \int_{B(r, x)} |f(y) - f(x)| dy = 0 \right\}.
$$

定理1.21. If $f \text{ ∈ } L^1_{loc}$, then $m((L_f)^c) = 0$.

4.1 Topological spaces

Let X be a nonempty set.

 \mathcal{R} X 1.22 (Topological Space). A topology on X is a family T of subsets of X that satisfies the following conditions:

- \emptyset , $X \in \mathcal{T}$.
- Closed under finite intersections: $U, V \in \mathcal{T} \Longrightarrow U \cap V \in \mathcal{T}$.
- Closed under arbitrary unions: ${U_i}_{i \in I} \subset \mathcal{T} \Longrightarrow \bigcup_{i \in I} U_i \in \mathcal{T}$.

The pair (X, \mathcal{T}) is called a topological space.

If X is any nonempty set, $\mathcal{P}(X)$ and $\{\emptyset, X\}$ are topologies on X. They are called the discrete topology and the trivial (or indiscrete) topology, respectively.

If X is a metric space, the collection of all open sets with respect to the metric is a topology on X.

5.1 Normed vector spaces

Let K denote either $\mathbb R$ or $\mathbb C$, and let X be a vector space over K.

 \mathcal{R} **₹ 1.23.** A seminorm on X is a function $x \mapsto ||x||$ from X to $[0, \infty)$ such that

- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$ (the triangle inequality),
- $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $\lambda \in K$.

The second property clearly implies that $||0|| = 0$. A seminorm such that $||x|| = 0$ only when $x = 0$ is called a norm, and a vector space equipped with a norm is called a normed vector space (or normed linear space).

 \mathcal{R} X1.24 (Banach space). A normed vector space that is complete with respect to the norm metric is called a Banach space.

6.1 Basic theory of L^p spaces

• Let $1 \leq p \leq \infty$; we denote by p' the conjugate exponent,

$$
\frac{1}{p} + \frac{1}{p'} = 1.
$$

Let (X, \mathcal{M}, μ) denote a measure space.

 \mathcal{R} **1.25** (L^p spaces). Let 1 < p < ∞; If f is a measurable function on X, we define

$$
||f||_p = \left[\int |f|^p d\mu\right]^{1/p}
$$

(allowing the possibility that $||f||_p = \infty$), and we define

$$
L^p(X, \mathcal{M}, \mu) = \{ f : X \to \mathbb{C} : f \text{ is measurable and } ||f||_p < \infty \}
$$

We abbreviate $L^p(X, \mathcal{M}, \mu)$ by $L^p(\mu), L^p(X)$, or simply L^p when this will cause no confusion.

定义1.26. We set

$$
L^{\infty}(X) = \left\{ f : X \to \mathbb{R} \mid \begin{array}{c} f \text{ is measurable and there is a constant } C \\ \text{such that } |f(x)| \le C \text{ a.e. on } X \end{array} \right\}
$$

with

$$
||f||_{L^{\infty}} = ||f||_{\infty} = \inf\{C; |f(x)| \le C \text{ a.e. on } X\}.
$$

注记1.26.1. If $f \in L^{\infty}$ then we have

$$
|f(x)| \le ||f||_{\infty} \quad a.e. \text{ on } X.
$$

Indeed, there exists a sequence C_n such that $C_n \to ||f||_{\infty}$ and for each $n, |f(x)| \leq C_n$ a.e. on X. Therefore $|f(x)| \leq C_n$ for all $x \in X \backslash E_n$, with $|E_n| = 0$.

引理 1.27 (Young's inequality).

$$
ab \le \frac{1}{p}a^p + \frac{1}{p'}b^{p'} \quad \forall a \ge 0, \quad \forall b \ge 0.
$$

Equivalently,

$$
a^{\lambda}b^{1-\lambda} \leq \lambda a + (1-\lambda)b, \quad \forall a \geq 0, \quad \forall b \geq 0, \quad \lambda \in (0,1),
$$

with equality iff $a = b$.

定理1.28 (Hölder's inequality). Assume that $f \text{ } \in L^p$ and $g \text{ } \in L^{p'}$ with $1 \leq p \leq \infty$. Then $fg \in L^1$ and

$$
\int |fg| \leq ||f||_p ||g||_{p'}.
$$

注记1.28.1 (Extension of Hölder's inequality). Assume that f_1, f_2, \ldots, f_k are functions such that

$$
f_i \in L^{p_i}, 1 \leq i \leq k
$$
 with $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_k} \leq 1$.

Then the product $f = f_1 f_2 \cdots f_k$ belongs to L^p and

$$
|| f_1 f_2 \cdots f_k ||_p \leq || f_1 ||_{p_1} || f_2 ||_{p_2} \cdots || f_k ||_{p_k}.
$$

In particular, if $f \in L^p \cap L^q$ with $1 \leq p \leq q \leq \infty$, then $f \in L^r$ for all $r, p \leq r \leq q$, and the following "interpolation inequality" holds:

$$
||f||_r\leq ||f||_p^{\alpha}||f||_q^{1-\alpha},\ where\ \frac{1}{r}=\frac{\alpha}{p}+\frac{1-\alpha}{q},\quad 0\leq \alpha\leq 1.
$$

推论1.29. If A is any set and $0 < p < q \leq \infty$, then $l^p(A) \subset l^q(A)$ and $||f||_q \leq ||f||_p$.

推论1.30. If $\mu(X) < \infty$ and $0 < p < q \leq \infty$, then $L^p(\mu) \supset L^q(\mu)$ and

$$
||f||_p \le ||f||_q \mu(X)^{(1/p)-(1/q)}.
$$

引理1.31 (Triangle inequality/ Minkowski inequality). For $1 \le p \le \infty$, and $f, g \in L^p$, we have

$$
||f + g||_p \le ||f||_p + ||g||_p. \tag{1.2}
$$

In particular, L^p is a vector space and $\|\cdot\|_p$ is a norm for any $p, 1 \leq p \leq \infty$.

定理1.32. For $1 \leq p < \infty$, L^p is a Banach space.

6.2 Reflexivity. Separability. Dual of L^p spaces

 \mathcal{R} **X1.33** (Separable metric spaces). We say that a metric space E is separable if there exists a subset $D \subset E$, that is countable and dense.

 \mathcal{R} X1.34. The measurable space (X, \mathcal{M}) (or the σ -algebra \mathcal{M}) is called separable if there exists a countable family C such that $\sigma(\mathcal{C}) = \mathcal{M}$.

 $\mathcal{R} \mathcal{X}$ 1.35. The measure space (X, \mathcal{M}, μ) is called μ -separable, if there exists a separable $σ$ -algebra $\mathcal{M}_0 \subset \mathcal{M}$ such that ∀A ∈ $\mathcal{M}, \exists B \in \mathcal{M}_0$, $\mu(A \Delta B) = 0$.

注记1.35.1. $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n), m)$ is m-separable.

定理1.36. Assume that (X, \mathcal{M}, μ) is a μ -separable measure space, and μ is σ -finite. Then $L^p(X)$ is separable for any $p, 1 \leq p < \infty$. Usually, $L^{\infty}(X)$ is not separable.

作业 P_{187} 7, 9, 10, 15;