1 第8教学周10.24

6.5 Interpolation of L^p spaces

引 理1.1 (The Three Lines Lemma). Let ϕ be a bounded continuous function on the strip $0 \leq \operatorname{Re} z \leq 1$ that is holomorphic on the interior of the strip. If $|\phi(z)| \leq M_0$ for $\operatorname{Re} z = 0$ and $|\phi(z)| \leq M_1$ for $\operatorname{Re} z = 1$, then $|\phi(z)| \leq M_0^{1-t} M_1^t$ for $\operatorname{Re} z = t$, 0 < t < 1.

定理1.2 (The Riesz-Thorin Interpolation Theorem). Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are measure spaces and $p_0, p_1, q_0, q_1 \in [1, \infty]$. If $q_0 = q_1 = \infty$, suppose also that ν is semifinite. For 0 < t < 1, define p_t and q_t by

$$\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1}, \quad \frac{1}{q_t} = \frac{1-t}{q_0} + \frac{t}{q_1}.$$

If T is a linear map from $L^{p_0}(\mu) + L^{p_1}(\mu)$ into $L^{q_0}(\nu) + L^{q_1}(\nu)$ such that $||Tf||_{q_0} \le M_0 ||f||_{p_0}$ for $f \in L^{p_0}(\mu)$ and $||Tf||_{q_1} \le M_1 ||f||_{p_1}$ for $f \in L^{p_1}(\mu)$, then

$$||Tf||_{q_t} \le M_0^{1-t} M_1^t ||f||_{p_t}$$

for $f \in L^{p_t}(\mu), 0 < t < 1$.

例1.3. Fourier transform

$$T(f)(\xi) = \int_{\mathbb{R}^N} f(x)e^{-2\pi i x\xi} dx.$$
(1.1)

$$||Tf||_{L^{\infty}} \le ||f||_{L^{1}}, \quad ||Tf||_{L^{2}} = ||f||_{L^{2}}$$
(1.2)

If $1 \leq p \leq 2$ and 1/p + 1/q = 1, then the Fourier transform T has a unique extension to a bounded map from L^p to L^q , with $||T(f)||_{L^q} \leq ||f||_{L^p}$.

6.6 Convolution and regularization

Let $\Omega \subset \mathbb{R}^N$ be an open set.

 $C(\Omega)$ is the space of continuous functions on Ω .

 $C^k(\Omega)$ is the space of functions k times continuously differentiable on $\Omega(k \ge 1$ is an integer).

 $C^{\infty}(\Omega) = \cap_k C^k(\Omega).$

 $C_c(\Omega)$ is the space of continuous functions on Ω with compact support in Ω , i.e., which vanish outside some compact set $K \subset \Omega$.

$$C_c^k(\Omega) = C^k(\Omega) \cap C_c(\Omega).$$
$$C_c^{\infty}(\Omega) = C^{\infty}(\Omega) \cap C_c(\Omega).$$

If $f \in C^1(\Omega)$, its gradient is defined by

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_N}\right).$$

If $f \in C^k(\Omega)$ and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ is a multi-index of length $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_N$, less than k, we write

$$D^{\alpha}f = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_N}}{\partial x_N^{\alpha_N}} f.$$

定理1.4 (Young). Let $f \in L^1(\mathbb{R}^N)$ and let $g \in L^p(\mathbb{R}^N)$ with $1 \le p \le \infty$. Then for a.e. $x \in \mathbb{R}^N$ the function $y \mapsto f(x-y)g(y)$ is integrable on \mathbb{R}^N and we define

$$(f \star g)(x) = \int_{\mathbb{R}^N} f(x-y)g(y)dy.$$

In addition $f \star g \in L^p(\mathbb{R}^N)$ and

$$||f \star g||_p \le ||f||_1 ||g||_p$$

Let $f \in L^1(\mathbb{R}^N)$ and $g \in L^p(\mathbb{R}^N)$ with $1 \le p \le \infty$. Then $\operatorname{supp}(f \star g) \subset \overline{\operatorname{supp} f + \operatorname{supp} g}.$

命題1.5. Let $f \in C_c^k(\mathbb{R}^N)$ $(k \ge 1)$ and let $g \in L^1_{loc}(\mathbb{R}^N)$. Then $f \star g \in C^k(\mathbb{R}^N)$ and $D^{\alpha}(f \star g) = (D^{\alpha}f) \star g \quad \forall \alpha \text{ with } |\alpha| \le k.$

In particular, if $f \in C_c^{\infty}(\mathbb{R}^N)$ and $g \in L^1_{\text{loc}}(\mathbb{R}^N)$, then $f \star g \in C^{\infty}(\mathbb{R}^N)$.

 \mathfrak{Z} **X1.6** (Mollifiers). A sequence of mollifiers $(\rho_n)_{n\geq 1}$ is any sequence of functions on \mathbb{R}^N such that

$$\rho_n \in C_c^{\infty}(\mathbb{R}^N), \quad \operatorname{supp} \rho_n \subset \overline{B(0, 1/n)}, \quad \int \rho_n = 1, \rho_n \ge 0 \text{ on } \mathbb{R}^N.$$

例1.7.

$$\rho(x) = \begin{cases} e^{1/(|x|^2 - 1)} & \text{if } |x| < 1\\ 0 & \text{if } |x| > 1 \end{cases}$$

 $\rho_n(x) = Cn^N \rho(nx) \text{ with } C = 1/\int \rho.$

令题1.8. Assume $f \in C(\mathbb{R}^N)$. Then $(\rho_n \star f) \xrightarrow[n\to\infty]{} f$ uniformly on compact sets of \mathbb{R}^N .

定理1.9 (density). The space $C_c(\mathbb{R}^N)$ is dense in $L^p(\mathbb{R}^N)$; i.e.,

$$\forall f \in L^p\left(\mathbb{R}^N\right) \forall \varepsilon > 0 \quad \exists f_1 \in C_c\left(\mathbb{R}^N\right) \text{ such that } \|f - f_1\|_{L^p} \leq \varepsilon.$$

定理1.10. Assume $f \in L^p(\mathbb{R}^N)$ with $1 \le p < \infty$. Then $(\rho_n \star f) \xrightarrow[n \to \infty]{} f$ in $L^p(\mathbb{R}^N)$.

μ čt.11. Let $\Omega \subset \mathbb{R}^N$ be an open set. Then $C_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$ for any $1 \leq p < \infty$.

推论1.12. Let $\Omega \subset \mathbb{R}^N$ be an open set and let $u \in L^1_{loc}(\Omega)$ be such that

$$\int uf = 0 \quad \forall f \in C_c^{\infty}(\Omega)$$

Then u = 0 a.e. on Ω .

6.7 Criterion for strong compactness in L^p

\overline{\mathcal{E}} \overline{\mathbb{P}}1.13 (Ascoli-Arzelà). Let K be a compact metric space and let \mathcal{F} be a bounded subset of C(K). The closure of \mathcal{F} in C(K) is compact if and only if \mathcal{F} is uniformly equicontinuous, that is,

$$\forall \varepsilon > 0 \exists \delta > 0 \text{ such that } d(x_1, x_2) < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon \quad \forall f \in \mathcal{F}.$$

定理1.14 (Criterion for L^p strong compactness). Let \mathcal{F} be a bounded set in L^p with $1 \leq p < \infty$. \mathcal{F} is relatively compact if and only if

1. $\lim_{h\to 0} \sup_{f\in\mathcal{F}} \|f(x+\hbar) - f(x)\|_{L^p} = 0.$

2.
$$\lim_{R\to\infty} \sup_{f\in\mathcal{F}} \int_{B_R^C} |f|^p dx = 0.$$

作业 P_{192} 20, 22; P_{208} 41, 42;