1 第8教学周10.24

6.5 Interpolation of L^p spaces

 $\mathbf{\mathcal{J}}$ $\mathbf{\mathcal{I}}$ $\mathbf{\mathcal{I}}$ $\mathbf{\mathcal{I}}$ (The Three Lines Lemma). Let ϕ be a bounded continuous function on the strip $0 \leq \text{Re } z \leq 1$ that is holomorphic on the interior of the strip. If $|\phi(z)| \leq M_0$ for $\text{Re } z = 0 \text{ and } |\phi(z)| \le M_1 \text{ for } \text{Re } z = 1, \text{ then } |\phi(z)| \le M_0^{1-t} M_1^t \text{ for } \text{Re } z = t, \, 0 < t < 1.$

 $\mathbf{\mathcal{E}}\mathbf{\mathcal{H}}1.2$ (The Riesz-Thorin Interpolation Theorem). Suppose that (X,\mathcal{M},μ) and (Y,\mathcal{N},ν) are measure spaces and $p_0, p_1, q_0, q_1 \in [1, \infty]$. If $q_0 = q_1 = \infty$, suppose also that ν is semifinite. For $0 < t < 1$, define p_t and q_t by

$$
\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1}, \quad \frac{1}{q_t} = \frac{1-t}{q_0} + \frac{t}{q_1}.
$$

If T is a linear map from $L^{p_0}(\mu) + L^{p_1}(\mu)$ into $L^{q_0}(\nu) + L^{q_1}(\nu)$ such that $||Tf||_{q_0} \leq$ $M_0||f||_{p_0}$ for $f \in L^{p_0}(\mu)$ and $||Tf||_{q_1} \leq M_1||f||_{p_1}$ for $f \in L^{p_1}(\mu)$, then

$$
||Tf||_{q_t} \le M_0^{1-t} M_1^t ||f||_{p_t}
$$

for $f \in L^{p_t}(\mu)$, $0 < t < 1$.

~1.3. Fourier transform

$$
T(f)(\xi) = \int_{\mathbb{R}^N} f(x)e^{-2\pi ix\xi} dx.
$$
 (1.1)

$$
||Tf||_{L^{\infty}} \le ||f||_{L^{1}}, \quad ||Tf||_{L^{2}} = ||f||_{L^{2}}
$$
\n(1.2)

If $1 \leq p \leq 2$ and $1/p + 1/q = 1$, then the Fourier transform T has a unique extension to a bounded map from L^p to L^q , with $||T(f)||_{L^q} \leq ||f||_{L^p}$.

6.6 Convolution and regularization

Let $\Omega \subset \mathbb{R}^N$ be an open set.

 $C(\Omega)$ is the space of continuous functions on Ω .

 $C^k(\Omega)$ is the space of functions k times continuously differentiable on $\Omega(k \geq 1)$ is an integer).

 $C^{\infty}(\Omega) = \cap_k C^k(\Omega).$

 $C_c(\Omega)$ is the space of continuous functions on Ω with compact support in Ω , i.e., which vanish outside some compact set $K \subset \Omega$.

$$
C_c^k(\Omega) = C^k(\Omega) \cap C_c(\Omega).
$$

$$
C_c^{\infty}(\Omega) = C^{\infty}(\Omega) \cap C_c(\Omega).
$$

If
$$
f \in C^1(\Omega)
$$
, its gradient is defined by

$$
\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_N}\right).
$$

If $f \in C^k(\Omega)$ and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ is a multi-index of length $|\alpha| = \alpha_1 + \alpha_2 + \dots$ $\cdots + \alpha_N$, less than k, we write

$$
D^{\alpha} f = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}} \cdots \frac{\partial^{\alpha_N}}{\partial x_N^{\alpha_N}} f.
$$

定理1.4 (Young). Let $f \in L^1(\mathbb{R}^N)$ and let $g \in L^p(\mathbb{R}^N)$ with $1 \leq p \leq \infty$. Then for a.e. $x \in \mathbb{R}^N$ the function $y \mapsto f(x-y)g(y)$ is integrable on \mathbb{R}^N and we define

$$
(f \star g)(x) = \int_{\mathbb{R}^N} f(x - y)g(y)dy.
$$

In addition $f \star g \in L^p(\mathbb{R}^N)$ and

$$
||f \star g||_p \le ||f||_1 ||g||_p
$$

Let $f \in L^1(\mathbb{R}^N)$ and $g \in L^p(\mathbb{R}^N)$ with $1 \leq p \leq \infty$. Then $\mathrm{supp}(f \star g) \subset \overline{\mathrm{supp} f + \mathrm{supp} g}.$

命题1.5. Let $f \in C_c^k(\mathbb{R}^N)$ $(k \geq 1)$ and let $g \in L^1_{loc}(\mathbb{R}^N)$. Then $f \star g \in C^k(\mathbb{R}^N)$ and

$$
D^{\alpha}(f \star g) = (D^{\alpha}f) \star g \quad \forall \alpha \text{ with } |\alpha| \le k.
$$

In particular, if $f \in C_c^{\infty}(\mathbb{R}^N)$ and $g \in L^1_{loc}(\mathbb{R}^N)$, then $f \star g \in C^{\infty}(\mathbb{R}^N)$.

 \mathcal{R} **1.6** (Mollifiers). A sequence of mollifiers $(\rho_n)_{n\geq 1}$ is any sequence of functions on \mathbb{R}^N such that

$$
\rho_n \in C_c^{\infty}(\mathbb{R}^N)
$$
, $\text{supp}\,\rho_n \subset \overline{B(0,1/n)}$, $\int \rho_n = 1, \rho_n \geq 0$ on \mathbb{R}^N .

例1.7.

$$
\rho(x) = \begin{cases} e^{1/(|x|^2 - 1)} & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}
$$

 $\rho_n(x) = C n^N \rho(nx)$ with $C = 1/\int \rho$.

命题1.8. Assume $f \in C(\mathbb{R}^N)$. Then $(\rho_n \star f) \longrightarrow_{n \to \infty} f$ uniformly on compact sets of \mathbb{R}^N .

定理1.9 (density). The space $C_c(\mathbb{R}^N)$ is dense in $L^p(\mathbb{R}^N)$; i.e.,

$$
\forall f \in L^p\left(\mathbb{R}^N\right) \forall \varepsilon > 0 \quad \exists f_1 \in C_c\left(\mathbb{R}^N\right) \text{ such that } ||f - f_1||_{L^p} \le \varepsilon.
$$

定理1.10. Assume $f \in L^p(\mathbb{R}^N)$ with $1 \leq p < \infty$. Then $(\rho_n \star f) \xrightarrow[n \to \infty]{} f$ in $L^p(\mathbb{R}^N)$.

推论1.11. Let Ω ⊂ \mathbb{R}^N be an open set. Then $C_c^{\infty}(\Omega)$ is dense in $L^p(\Omega)$ for any $1 \leq p < \infty$.

推论1.12. Let $\Omega \subset \mathbb{R}^N$ be an open set and let $u \in L^1_{loc}(\Omega)$ be such that

$$
\int uf = 0 \quad \forall f \in C_c^{\infty}(\Omega).
$$

Then $u = 0$ a.e. on Ω .

6.7 Criterion for strong compactness in L^p

定理1.13 (Ascoli-Arzelà). Let K be a compact metric space and let F be a bounded subset of $C(K)$. The closure of F in $C(K)$ is compact if and only if F is uniformly equicontinuous, that is,

$$
\forall \varepsilon > 0 \exists \delta > 0 \text{ such that } d(x_1, x_2) < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon \quad \forall f \in \mathcal{F}.
$$

定理1.14 (Criterion for L^p strong compactness). Let F be a bounded set in L^p with $1 \leq p < \infty$. F is relatively compact if and only if

1. $\lim_{h\to 0} \sup_{f\in\mathcal{F}} ||f(x+h) - f(x)||_{L^p} = 0.$

2.
$$
\lim_{R \to \infty} \sup_{f \in \mathcal{F}} \int_{B_R^C} |f|^p dx = 0.
$$

作业 P_{192} 20, 22; P_{208} 41, 42;