1 第五教学周9.29

3.1 Signed measures

 $\mathfrak{E} \mathfrak{L} 1.1$ (Signed measure). Let (X, \mathcal{M}) be a measurable space. A signed measure on (X, \mathcal{M}) is a function $\nu : \mathcal{M} \to [-\infty, \infty]$ such that

- $\nu(\emptyset) = 0;$
- ν assumes at most one of the values $\pm \infty$;
- if $\{E_j\}$ is a sequence of disjoint sets in \mathcal{M} , then $\nu\left(\bigcup_{1}^{\infty} E_j\right) = \sum_{1}^{\infty} \nu\left(E_j\right)$, where the latter sum converges absolutely if $\nu\left(\bigcup_{1}^{\infty} E_j\right)$ is finite.

命题1.2. Let ν be a signed measure on (X, \mathcal{M}) . If $\{E_j\}$ is an increasing sequence in \mathcal{M} , then

$$\nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \nu\left(E_j\right).$$

If $\{E_i\}$ is a decreasing sequence in \mathcal{M} and $\nu(E_1)$ is finite, then

$$\nu\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \nu\left(E_j\right).$$

 $\not \in \mathcal{X}$ **1.3.** If ν is a signed measure on (X, \mathcal{M}) , a set $E \in \mathcal{M}$ is called positive (resp. negative, null) for ν if $\nu(F) \ge 0$ (resp. $\nu(F) \le 0, \nu(F) = 0$) for all $F \in \mathcal{M}$ such that $F \subset E$.

引理1.4. Any measurable subset of a positive set is positive, and the union of any countable family of positive sets is positive.

定理1.5 (Hahn decomposition). If ν is a signed measure on (X, \mathcal{M}) , there exist a positive set P and a negative set N for ν such that $P \cup N = X$ and $P \cap N = \emptyset$. If P', N' is another such pair, then $P\Delta P' (= N\Delta N')$ is null for ν .

引理1.6. Let ν be a signed measure on (X, \mathcal{M}) , and $A \in \mathcal{M}$ with $-\infty < \nu(A) < 0$. Then there is a negative set $B \subset A$ such that

$$\nu(B) \le \nu(A).$$

i $\mathfrak{k}\mathfrak{l}\mathbf{1.6.1}$. The decomposition $X = P \cup N$ if X as the disjoint union of a positive set and a negative set is called a Hahn decomposition for ν . It is usually not unique (ν -null sets can be transferred from P to N or from N to P), but it leads to a canonical representation of ν as the difference of two positive measures. $\not \in \mathcal{X}$ **1.7.** We say that two signed measures μ and ν on (X, \mathcal{M}) are mutually singular, or that ν is singular with respect to μ , or vice versa, if there exist $E, F \in \mathcal{M}$ such that $E \cap F = \emptyset, E \cup F = X, E$ is null for μ , and F is null for ν .

Informally speaking, mutual singularity means that μ and ν "live on disjoint sets." We express this relationship symbolically with the perpendicularity sign:

 $\mu \perp \nu$.

定理1.8 (Jordan decomposition). If ν is a signed measure, there exist unique positive measures ν^+ and ν^- such that $\nu = \nu^+ - \nu^-$ and $\nu^+ \perp \nu^-$.

3.2 The Lebesgue-Radon-Nikodym theorem

 $\not\in \&1.9$. Suppose that ν is a signed measure and μ is a positive measure on (X, \mathcal{M}) . We say that ν is absolutely continuous with respect to μ and write

 $\nu \ll \mu$

if $\nu(E) = 0$ for every $E \in \mathcal{M}$ for which $\mu(E) = 0$.

注记1.9.1. It is easily verified that $\nu \ll \mu$ iff $|\nu| \ll \mu$ iff $\nu^+ \ll \mu$ and $\nu^- \ll \mu$

定理1.10. Let ν be a finite signed measure and μ a positive measure on (X, \mathcal{M}) . Then $\nu \ll \mu$ iff for every $\epsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| < \epsilon$ whenever $\mu(E) < \delta$.

推论1.11. If $f \in L^1(\mu)$, for every $\epsilon > 0$ there exists $\delta > 0$ such that $\left| \int_E f d\mu \right| < \epsilon$ whenever $\mu(E) < \delta$.

引理1.12. Suppose that ν and μ are finite measures on (X, \mathcal{M}) . Either $\nu \perp \mu$, or there exist $\epsilon > 0$ and $E \in \mathcal{M}$ such that $\mu(E) > 0$ and $\nu \ge \epsilon \mu$ on E (that is, E is a positive set for $\nu - \epsilon \mu$).

定理1.13 (Lebesgue-Radon-Nikodym theorem). Let ν be a σ-finite signed measure and μ a σ-finite positive measure on (X, \mathcal{M}) . There exist unique σ-finite signed measures λ, ρ on (X, \mathcal{M}) such that

 $\lambda \perp \mu, \quad \rho \ll \mu, \quad and \quad \nu = \lambda + \rho.$

Moreover, there is an extended μ -integrable function $f: X \to \mathbb{R}$ such that $d\rho = f d\mu$, and any two such functions are equal μ -a.e.

作业P₈₈ 3; P₉₂ 9, 11, 17;