1 第9教学周10.31

6.8 Criterion for weak compactness in L^p

定理1.1. Let $1 , and <math>\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in $L^p(X)$ satisfying

$$\sup_{n} \|f_n\|_{L^p} < \infty. \tag{1.1}$$

Then there exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ and a function $f \in L^p(X)$ such that

$$\lim_{k \to \infty} \int f_{n_k} g d\mu = 0, \quad \forall g \in L^{p'}.$$
 (1.2)

定理1.2 (Dunford-Pettis, weak compactness in L^1). Let (X, \mathcal{M}, μ) be a σ-finite and separable measure space. A set $\mathcal{F} \in L^1(X)$ is weakly sequentially compact if and only if

- \mathcal{F} is bounded in $L^1(X)$.
- \mathcal{F} is uniformly absolutely continuous.
- \mathcal{F} is equi-tight.

推论1.3. Weak and strong convergence of sequences in l^1 are the same.

6.9 The dual of L^{∞}

Let (X, \mathcal{M}, μ) be a measure space and let

$$F(X, \mathcal{M}, \mu) = \left\{ \nu : \mathcal{M} \mapsto \mathbb{C} \big| \nu : \text{finitely additive set function}, \nu \ll \mu, \sup_{A \in \mathcal{M} | \nu(A) | < \infty} \right\}.$$
(1.3)

Define

$$|\nu|(A) = \sup \sum_{j=1}^{n} |\nu(A_j)|$$
 (1.4)

where the supremum is taken over all disjoint decompositions $A = \sum_{j=1}^{n} A_j$.

Further, if $f \in L^{\infty}_{\mu}(X)$ and $\nu \in F(X)$,

$$\int_X f d\nu =: \lim_{n \to \infty} \int_X f_n d\nu$$

where f_n is simple, $||f_n - f||_{\infty} \to 0$, and

$$\int_{X} g d\nu = \sum_{j=1}^{n} a_{j} \nu (A_{j}) \text{ for } g = \sum_{j=1}^{n} a_{j} 1_{A_{j}}.$$

i. $\forall f, g \in L^{\infty}_{\mu}(X), \forall \alpha, \beta \in \mathbb{C}, \text{ and } \forall \nu \in F(X),$

$$\int_X (\alpha f + \beta g) d\nu = \alpha \int_X f d\nu + \beta \int_X g d\nu$$

ii. $\forall f \in L^{\infty}_{\mu}(X)$ and $\forall \nu \in F(X), \left|\int_{X} f d\nu\right| \leq \int_{X} |f| d|\nu|;$

- iii. F(X) is normed by (5.36);
- iv. If $f \in L^{\infty}_{\mu}(X), \nu \in F(X)$, and $\mu(\{x : f(x) \neq 0\}) = 0$, then

$$\int_X f d\nu = 0.$$

定理1.4. Let (X, \mathcal{A}, μ) be a measure space. There is a surjective isometric isomorphism

$$F(X) \to \left(L^{\infty}_{\mu}(X)\right)',$$
$$\nu \mapsto F_{\nu},$$

where

$$\forall f \in L^{\infty}_{\mu}(X), \quad F_{\nu}(f) = \int_{X} f d\nu.$$

Also, F(X) is a Banach space.

7.1 Positive linear functional on $C_c(X)$

X: locally compact Hausdorff (LCH) space.

 $\not \in \& 1.5.$ A linear functional I on $C_c(X)$ will be called positive if $I(f) \ge 0$ whenever $f \ge 0$.

 $\not \in \mathbf{X1.6}$ (regularity). Let μ be a Borel measure on X and E a Borel subset of X. The measure μ is called outer regular on E if

$$\mu(E) = \inf\{\mu(U) : U \supset E, U \text{ open }\}$$

and inner regular on E if

$$\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compact }\}.$$

 $\notin \& 1.7$ (Radon measure). A Radon measure on X is a Borel measure that is finite on all compact sets, outer regular on all Borel sets, and inner regular on all open sets.

定理1.8 (Riesz representation theorem on $C_c(X)$). If I is a positive linear functional on $C_c(X)$, there is a unique Radon measure μ on X such that

$$I(f)=\int f d\mu$$

for all $f \in C_c(X)$. Moreover, μ satisfies

$$\mu(U) = \sup \{ I(f) : f \in C_c(X), f \prec U \} \text{ for all open } U \subset X$$

and

$$\mu(K) = \inf \{ I(f) : f \in C_c(X), f \ge \chi_K \} \text{ for all compact } K \subset X.$$

作业

1. (Urysohn引理).设 Ω 为 \mathbb{R}^{N} 中开集, $K \subset \Omega$ 为紧集.证明存在 $\psi \in C_{c}^{\infty}(\Omega)$ 满足

$$\psi(x) = 1, \quad \forall x \in K.$$

- 2. 有限Borel(复)符号测度空间 $M(X, \mathcal{B}_X, \mathbb{R})$ 和 $M(X, \mathcal{B}_X, \mathbb{C})$ 在变差范数下是Banach空间。
- 3. 设*X*是Banach空间。子集*F*相对紧 $\iff \forall \varepsilon > 0,$ 存在相对紧集 $K_{\varepsilon},$ 使得

$$F \subset K_{\varepsilon} + B(\varepsilon) := \{ f + g : f \in K_{\varepsilon}, g \in B(\varepsilon) \}.$$
(1.5)

4. P_{192} **21**;