1 第9教学周10.31

6.8 Criterion for weak compactness in L^p

定理1.1. Let $1 < p \leq \infty$, and $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in $L^p(X)$ satisfying

$$
\sup_{n} \|f_n\|_{L^p} < \infty. \tag{1.1}
$$

Then there exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ and a function $f \in L^p(X)$ such that

$$
\lim_{k \to \infty} \int f_{n_k} g d\mu = 0, \quad \forall g \in L^{p'}.
$$
\n(1.2)

定理1.2 (Dunford-Pettis, weak compactness in L^1). Let (X, \mathcal{M}, μ) be a σ-finite and separable measure space. A set $\mathcal{F} \in L^1(X)$ is weakly sequentially compact if and only if

- F is bounded in $L^1(X)$.
- F is uniformly absolutely continuous.
- F is equi-tight.

推论1.3. Weak and strong convergence of sequences in l^1 are the same.

6.9 The dual of L^∞

Let (X, \mathcal{M}, μ) be a measure space and let

$$
F(X, \mathcal{M}, \mu) = \left\{ \nu : \mathcal{M} \mapsto \mathbb{C} \big| \nu : \text{finitely additive set function}, \nu \ll \mu, \sup_{A \in \mathcal{M} \mid \nu(A) \mid < \infty} \right\}.
$$
\n(1.3)

Define

$$
|\nu|(A) = \sup \sum_{j=1}^{n} |\nu(A_j)| \tag{1.4}
$$

where the supremum is taken over all disjoint decompositions $A = \sum_{j=1}^{n} A_j$.

Further, if $f \in L^{\infty}_{\mu}(X)$ and $\nu \in F(X)$,

$$
\int_X f d\nu =: \lim_{n \to \infty} \int_X f_n d\nu
$$

where f_n is simple, $||f_n - f||_{\infty} \to 0$, and

$$
\int_X g d\nu = \sum_{j=1}^n a_j \nu(A_j) \text{ for } g = \sum_{j=1}^n a_j 1_{A_j}.
$$

i. $\forall f, g \in L^{\infty}_{\mu}(X), \forall \alpha, \beta \in \mathbb{C}$, and $\forall \nu \in F(X)$,

$$
\int_X (\alpha f + \beta g) d\nu = \alpha \int_X f d\nu + \beta \int_X g d\nu
$$

ii. $\forall f \in L^{\infty}_{\mu}(X)$ and $\forall \nu \in F(X), \left| \int_{X} f d\nu \right| \leq \int_{X} |f| d|\nu|;$

- iii. $F(X)$ is normed by (5.36) ;
- iv. If $f \in L^{\infty}_{\mu}(X), \nu \in F(X)$, and $\mu({x : f(x) \neq 0}) = 0$, then

$$
\int_X f d\nu = 0.
$$

定理1.4. Let (X, \mathcal{A}, μ) be a measure space. There is a surjective isometric isomorphism

$$
F(X) \to \left(L_{\mu}^{\infty}(X)\right)',
$$

$$
\nu \mapsto F_{\nu},
$$

where

$$
\forall f \in L^\infty_\mu(X), \quad F_\nu(f) = \int_X f d\nu.
$$

Also, $F(X)$ is a Banach space.

7.1 Positive linear functional on $C_c(X)$

X: locally compact Hausdorff (LCH) space.

 \mathcal{R} **₹**1.5. A linear functional I on $C_c(X)$ will be called positive if $I(f) \geq 0$ whenever $f \geq 0$.

 \mathcal{R} **1.6** (regularity). Let μ be a Borel measure on X and E a Borel subset of X. The measure μ is called outer regular on E if

$$
\mu(E) = \inf \{ \mu(U) : U \supset E, U \text{ open } \}
$$

and inner regular on E if

$$
\mu(E) = \sup \{ \mu(K) : K \subset E, K \text{ compact } \}.
$$

 $\&\&1.7$ (Radon measure). A Radon measure on X is a Borel measure that is finite on all compact sets, outer regular on all Borel sets, and inner regular on all open sets.

定理1.8 (Riesz representation theorem on $C_c(X)$). If I is a positive linear functional on $C_c(X)$, there is a unique Radon measure μ on X such that

$$
I(f)=\int f d\mu
$$

for all $f \in C_c(X)$. Moreover, μ satisfies

$$
\mu(U) = \sup \{ I(f) : f \in C_c(X), f \prec U \} \quad \text{for all open } U \subset X
$$

and

 $\mu(K) = \inf \{ I(f) : f \in C_c(X), f \geq \chi_K \}$ for all compact $K \subset X$.

作业

1. (Urysohn引理).设Ω为R^N中开集, $K \subset \Omega$ 为紧集.证明存在 $\psi \in C_c^{\infty}(\Omega)$ 满足

$$
\psi(x) = 1, \quad \forall x \in K.
$$

- 2. 有限Borel (复) 符号测度空间 $M(X, \mathcal{B}_X, \mathbb{R})$ 和 $M(X, \mathcal{B}_X, \mathbb{C})$ 在变差范数下是Banach空 间。
- 3. 设X是Banach空间。子集 F 相对紧 \Longleftrightarrow ∀ $\varepsilon > 0$,存在相对紧集 K_{ε} ,使得

$$
F \subset K_{\varepsilon} + B(\varepsilon) := \{ f + g : f \in K_{\varepsilon}, g \in B(\varepsilon) \}.
$$
 (1.5)

4. P_{192} **21**;