第三教学周9.19

 \mathcal{R} **10.1.** If μ^* is an outer measure on X, a set $A \subset X$ is called μ^* -measurable if

$$
\mu(D) \ge \mu^*(D \cap A) + \mu^*(D \cap A^c), \quad \forall D \subset X. \tag{0.1}
$$

引理0.2 (Characteristic of μ^* -measurable set). Let $\mathcal{C} \subset \mathcal{P}(X)$ and $\emptyset \in \mathcal{C}$. Assume that the non-negative set function $\mu : \mathcal{C} \mapsto [0,\infty]$ satisfies

- $\mu(\emptyset) = 0$.
- μ is semi- σ -additive.

Let μ^* be the outer measure induced by μ .

The set $A \subset X$ is a μ^* -measurable set if and only if

$$
\mu(C) \ge \mu^*(C \cap A) + \mu^*(C \cap A^c) \quad \forall C \in \mathcal{C}.\tag{0.2}
$$

注记0.1. 验证可测集, 减弱到只需要测试 C 中元素即可。

定理0.3 (restriction of outer measure, Carathéodory). Let μ^* be an outer measure on X, and \mathcal{M}^* be the class of μ^* -measurable sets. Then \mathcal{M}^* is a σ -algebra and the restriction of μ^* to \mathcal{M}^* is a measure.

Furthermore, $(X, \mathcal{M}^*, \mu^*|_{M^*})$ is a complete measure space.

Partial proof. Completeness: $\forall A \subset N$ with $\mu^*(N) = 0$,

$$
\mu^*(D) \ge \mu^*(D \cap A^c) \ge \mu^*(D \cap A^c) + \mu^*(D \cap A), \quad \forall D \subset X.
$$
 (0.3)

 $\mathbf{\mathcal{E}} \mathbf{\mathcal{H}}$ 0.4 (Uniqueness). *Conditions:*

- $C: \pi$ -system, $X \in \mathcal{C}$.
- μ_1, μ_2 : finite measure on $\sigma(\mathcal{C}), \mu_1|_{\mathcal{C}} = \mu_2|_{\mathcal{C}}$.

Then $\mu_1 = \mu_2$ on $\sigma(C)$.

定理0.5 (Carathéodory extension's theorem). Let C be a semi-ring of X, and a set function $\mu : \mathcal{C} \mapsto [0,\infty]$ be σ -additive. Then μ extends to a measure on $\sigma(\mathcal{C})$.

(That is, $\mu^*|_{\sigma(\mathcal{C})}$, where μ^* is the outer measure induced by μ .)

Furthermore, if μ is σ -finite on C, and $X \in \mathcal{C}_{\sigma}$, then the extension is unique.

 \mathcal{R} 10.6 (Complete measure space). Given the measure space (X, \mathcal{M}, μ) , the σ -algebra M is called μ -complete if every subset of a μ -negligible set is measurable.

定理0.7 (Completion). Let (X, \mathcal{M}, μ) be a measure space.

$$
\mathcal{N} = \{ N \subset X | \exists A \in \mathcal{M}, \mu(A) = 0, \quad s.t. \quad N \subset A \}
$$
(0.4)

$$
\overline{\mathcal{M}} = \{ A \cup N | A \in \mathcal{M}, N \in \mathcal{N} \}
$$
\n
$$
(0.5)
$$

$$
\overline{\mu}(A \cup N) = \mu(A), A \in \mathcal{M}, N \in \mathcal{N}
$$
\n(0.6)

Then $\overline{\mathcal{M}}$ is a σ -algebra, and $\overline{\mu}$ is a measure on $\overline{\mathcal{M}}$.

 $(\overline{\mu}$ is a unique extension of μ to a complete measure on $\overline{\mathcal{M}}$.)

 $(X,\overline{\mathcal{M}},\overline{\mu})$ is the smallest complete measure space which contains (X,\mathcal{M},μ) . We call it the completion space of (X, \mathcal{M}, μ) .

定理0.8. Let (X, \mathcal{M}, μ) be a measure space, μ^* be the outer measure induced by μ . Then, for any $E \subset X$, there is a $C \in \mathcal{M}$ with $E \subset C$ and $\mu^*(E) = \mu(C)$.

定理0.9. Let (X, \mathcal{M}, μ) be a σ-finite measure space. Then $\overline{\mathcal{M}} = \mathcal{M}^*$.

0.1 Borel/Lebesgue measures on Euclidean spaces

Let

$$
C = \{(a, b] : a \le b, a, b \in \mathbb{R}^n\},\
$$

$$
\mu((a, b]) = \prod_{i=1}^n (b_i - a_i).
$$
 (0.7)

 $\mathbf{\mathcal{J}}$! 理0.10. C is a semi-ring on \mathbb{R}^n , and μ is a σ-additive negative set function on C.

 $\mathcal{B}(\mathbb{R}^n)$ is a Borel σ -algebra. $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R}^n)$.

定理0.11 (Lebesgue-Stieltjes measure). For any increasing and right continuous function $F(x)$, define

$$
\mu_F((a, b]) =: F(b) - F(a), \tag{0.8}
$$

on the collection $\mathcal C$ of intervals $(a, b]$. Then μ_F extends uniquely to a measure μ_F^* on $\sigma(\mathcal{C})=\mathcal{B}(\mathbb{R}^n).$

 $\mathbf{\hat{H}}\mathbf{\hat{H}}\mathbf{0.2}.$ When $F(x) = x$, $\mathcal{L}(\mathbb{R}^n) = \mathbf{\overline{B}}(\mathbb{R}^n)$ is the collection of Lebesgue measurable sets.

作业 P_{32} 17, 23.