第三教学周9.19

 $\mathfrak{E} \mathbf{X0.1.}$ If μ^* is an outer measure on X, a set $A \subset X$ is called μ^* -measurable if

$$\mu(D) \ge \mu^*(D \cap A) + \mu^*(D \cap A^c), \quad \forall D \subset X.$$

$$(0.1)$$

引理0.2 (Characteristic of μ^* -measurable set). Let $\mathcal{C} \subset \mathcal{P}(X)$ and $\emptyset \in \mathcal{C}$. Assume that the non-negative set function $\mu : \mathcal{C} \mapsto [0, \infty]$ satisfies

- $\mu(\emptyset) = 0.$
- μ is semi- σ -additive.

Let μ^* be the outer measure induced by μ .

The set $A \subset X$ is a μ^* -measurable set if and only if

$$\mu(C) \ge \mu^*(C \cap A) + \mu^*(C \cap A^c) \quad \forall C \in \mathcal{C}.$$

$$(0.2)$$

注记0.1. 验证可测集,减弱到只需要测试C中元素即可。

定理0.3 (restriction of outer measure, Carathéodory). Let μ^* be an outer measure on X, and \mathcal{M}^* be the class of μ^* -measurable sets. Then \mathcal{M}^* is a σ-algebra and the restriction of μ^* to \mathcal{M}^* is a measure.

Furthermore, $(X, \mathcal{M}^*, \mu^*|_{\mathcal{M}^*})$ is a complete measure space.

Partial proof. Completeness: $\forall A \subset N$ with $\mu^*(N) = 0$,

$$\mu^*(D) \ge \mu^*(D \cap A^c) \ge \mu^*(D \cap A^c) + \mu^*(D \cap A), \quad \forall D \subset X.$$

$$(0.3)$$

定理0.4 (Uniqueness). Conditions:

- \mathcal{C} : π -system, $X \in \mathcal{C}$.
- μ_1, μ_2 : finite measure on $\sigma(\mathcal{C}), \ \mu_1|_{\mathcal{C}} = \mu_2|_{\mathcal{C}}.$

Then $\mu_1 = \mu_2$ on $\sigma(\mathcal{C})$.

定理0.5 (Carathéodory extension's theorem). Let C be a semi-ring of X, and a set function $\mu : \mathcal{C} \mapsto [0, \infty]$ be σ-additive. Then μ extends to a measure on $\sigma(\mathcal{C})$.

(That is, $\mu^*|_{\sigma(\mathcal{C})}$, where μ^* is the outer measure induced by μ .)

Furthermore, if μ is σ -finite on C, and $X \in C_{\sigma}$, then the extension is unique.

 $\not\in \mathbf{X0.6}$ (Complete measure space). Given the measure space (X, \mathcal{M}, μ) , the σ -algebra \mathcal{M} is called μ -complete if every subset of a μ -negligible set is measurable.

定理0.7 (Completion). Let (X, \mathcal{M}, μ) be a measure space.

$$\mathcal{N} = \{ N \subset X | \exists A \in \mathcal{M}, \mu(A) = 0, \quad s.t. \quad N \subset A \}$$
(0.4)

$$\overline{\mathcal{M}} = \{A \cup N | A \in \mathcal{M}, N \in \mathcal{N}\}$$
(0.5)

$$\overline{\mu}(A \cup N) = \mu(A), A \in \mathcal{M}, N \in \mathcal{N}$$

$$(0.6)$$

Then $\overline{\mathcal{M}}$ is a σ -algebra, and $\overline{\mu}$ is a measure on $\overline{\mathcal{M}}$.

 $(\overline{\mu} \text{ is a unique extension of } \mu \text{ to a complete measure on } \overline{\mathcal{M}}.)$

 $(X, \overline{\mathcal{M}}, \overline{\mu})$ is the smallest complete measure space which contains (X, \mathcal{M}, μ) . We call it the completion space of (X, \mathcal{M}, μ) .

定理0.8. Let (X, \mathcal{M}, μ) be a measure space, μ^* be the outer measure induced by μ . Then, for any $E \subset X$, there is a $C \in \mathcal{M}$ with $E \subset C$ and $\mu^*(E) = \mu(C)$.

定理0.9. Let (X, \mathcal{M}, μ) be a σ-finite measure space. Then $\overline{\mathcal{M}} = \mathcal{M}^*$.

0.1 Borel/Lebesgue measures on Euclidean spaces

Let

$$C = \{(a, b] : a \le b, a, b \in \mathbb{R}^n\},\$$

$$\mu((a, b]) = \prod_{i=1}^n (b_i - a_i).$$

(0.7)

引理0.10. C is a semi-ring on \mathbb{R}^n , and μ is a σ -additive negative set function on C.

 $\mathcal{B}(\mathbb{R}^n)$ is a Borel σ -algebra. $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R}^n)$.

定理0.11 (Lebesgue-Stieltjes measure). For any increasing and right continuous function F(x), define

$$\mu_F((a,b]) =: F(b) - F(a), \tag{0.8}$$

on the collection C of intervals (a, b]. Then μ_F extends uniquely to a measure μ_F^* on $\sigma(C) = \mathcal{B}(\mathbb{R}^n)$.

注记0.2. When F(x) = x, $\mathcal{L}(\mathbb{R}^n) =: \overline{\mathcal{B}(\mathbb{R}^n)}$ is the collection of Lebesgue measurable sets.

作业P₃₂ 17, 23.