1 第七教学周10.17

6.2 Reflexivity. Dual of L^p

Let (X, \mathcal{M}, μ) be a measure space. Suppose that p and q are conjugate exponents. Hölder's inequality shows that each $g \in L^q$ defines a bounded linear functional ϕ_g on L^p by

$$\phi_g(f) = \int fg$$

命題1.1. Let $1 \le q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. If $g \in L^q$, then

$$||g||_q = ||\phi_g|| = \sup\left\{ \left| \int fg \right| : ||f||_p = 1 \right\}.$$

If μ is semifinite, this result holds also for $q = \infty$.

命题1.2. Let $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$. $L^q(X)$ is isometrically isomorphic to $(L^p(X))^*$. Furthermore, if μ is σ -finite, $L^\infty(X) = (L^1(X))^*$.

The following table summarizes the main properties of the space $L^p(\Omega)$ when Ω is a measurable subset of \mathbb{R}^d :

	Reflexive	Separable	Dual space
L^p with 1	YES	YES	$L^{p'}$
L^1	NO	YES	L^{∞}
L^{∞}	NO	NO	Strictly bigger than L^1

6.3 Some useful inequalities

引理1.3 (Chebyshev's inequality). If $f \in L^p(0 , then for any <math>\alpha > 0$,

$$\mu(\{x: |f(x)| > \alpha\}) \le \left[\frac{\|f\|_p}{\alpha}\right]^p$$

引理1.4 (Schur's lemma). Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, and let K be an $(\mathcal{M} \otimes \mathcal{N})$ -measurable function on $X \times Y$. Suppose that there exists C > 0such that $\int |K(x,y)| d\mu(x) \leq C$ for a.e. $y \in Y$ and $\int |K(x,y)| d\nu(y) \leq C$ for a.e. $x \in X$, and that $1 \leq p \leq \infty$. If $f \in L^p(\nu)$, the integral

$$Tf(x) = \int K(x,y)f(y)d\nu(y)$$

converges absolutely for a.e. $x \in X$, the function Tf thus defined is in $L^p(\mu)$, and $||Tf||_p \leq C ||f||_p$

定理1.5. Let K be a Lebesgue measurable function on $(0,\infty) \times (0,\infty)$ such that

$$K(\lambda x, \lambda y) = \lambda^{-1} K(x, y), \text{ for all } \lambda > 0$$

and

$$\int_0^\infty |K(x,1)| x^{-1/p} dx = C < \infty \quad \text{for some } p \in [1,\infty],$$

and let q be the conjugate exponent to p. For $f \in L^p$ and $g \in L^q$, let

$$Tf(y) = \int_0^\infty K(x, y)f(x)dx, \quad Sg(x) = \int_0^\infty K(x, y)g(y)dy.$$

Then Tf and Sg are defined a.e., and

$$||Tf||_p \le C ||f||_p$$
 and $||Sg||_q \le C ||g||_q$

推论1.6 (Hardy's inequality). Let

$$Tf(y) = y^{-1} \int_0^y f(x) dx, \quad Sg(x) = \int_x^\infty y^{-1} g(y) dy.$$

Then for $1 and <math>1 \le q < \infty$,

$$||Tf||_p \le \frac{p}{p-1} ||f||_p, \quad ||Sg||_q \le q ||g||_q.$$

6.4 Distribution functions and weak L^p

 \mathfrak{E} **L1.7.** If f is a measurable function on (X, \mathcal{M}, μ) , we define its distribution function $\lambda_f: (0, \infty) \to [0, \infty]$ by

$$\lambda_f(\alpha) = \mu(\{x : |f(x)| > \alpha\}).$$

命题1.8. • λ_f is decreasing and right continuous.

- If $|f| \leq |g|$, then $\lambda_f \leq \lambda_g$.
- If $|f_n|$ increases to |f|, then λ_{f_n} increases to λ_f .
- If f = g + h, then $\lambda_f(\alpha) \le \lambda_g\left(\frac{1}{2}\alpha\right) + \lambda_h\left(\frac{1}{2}\alpha\right)$.

 ϕ **51.9.** If $\lambda_f(\alpha) < \infty$ for all $\alpha > 0$ and ϕ is a nonnegative Borel measurable function on $(0, \infty)$, then

$$\int_X \phi \circ |f| d\mu = -\int_0^\infty \phi(\alpha) d\lambda_f(\alpha).$$

命题1.10. If 0 , then

$$\int |f|^p d\mu = p \int_0^\infty \alpha^{p-1} \lambda_f(\alpha) d\alpha$$

 $\not \in \& 1.11$ (Weak L^p space). If f is a measurable function on X and 0 , we define

$$[f]_p = \left(\sup_{\alpha>0} \alpha^p \lambda_f(\alpha)\right)^{1/p}$$

or use the notations $||f||_{L^{p,w}}, ||f||_{L^{p,\infty}}$. We define weak L^p to be the set of all f such that $[f]_p < \infty$.

注记1.12. 1. $[\cdot]_p$ is not a norm. The triangle inequality fails. However, weak L^p is a topological vector space.

- 2. $L^p \subset weak L^p$, and $[f]_p \leq ||f||_{L^p}$.
- 3. Weak- $L^{\infty} = L^{\infty}$.

6.5 Interpolation of L^p spaces

Let T be a map from some vector space \mathcal{D} of measurable functions on (X, \mathcal{M}, μ) to the space of all measurable functions on (Y, \mathcal{N}, ν) .

- T is called sublinear if $|T(f+g)| \leq |Tf| + |Tg|$ and |T(cf)| = c|Tf| for all $f, g \in \mathcal{D}$ and c > 0.
- A sublinear map T is strong type $(p,q)(1 \le p,q \le \infty)$ if $L^p(\mu) \subset \mathcal{D}, T$ maps $L^p(\mu)$ into $L^q(\nu)$, and there exists C > 0 such that $||Tf||_q \le C ||f||_p$ for all $f \in L^p(\mu)$.
- A sublinear map T is weak type $(p,q)(1 \le p \le \infty, 1 \le q < \infty)$ if $L^p(\mu) \subset \mathcal{D}, T$ maps $L^p(\mu)$ into weak $L^q(\nu)$, and there exists C > 0 such that $[Tf]_q \le C ||f||_p$ for all $f \in L^p(\mu)$. Also, we shall say that T is weak type (p,∞) iff T is strong type (p,∞) .

c\mu1.13 (Marcinkiewicz interpolation theorem). Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are measure spaces; p_0, p_1, q_0, q_1 are elements of $[1, \infty]$ such that $p_0 \leq q_0, p_1 \leq q_1$, and $q_0 \neq q_1$; and

$$\frac{1}{p} = \frac{1-t}{p_0} + \frac{t}{p_1} \quad and \quad \frac{1}{q} = \frac{1-t}{q_0} + \frac{t}{q_1}, \qquad where \ 0 < t < 1.$$

If T is a sublinear map from $L^{p_0}(\mu) + L^{p_1}(\mu)$ to the space of measurable functions on Y that is weak types (p_0, q_0) and (p_1, q_1) , then T is strong type (p, q).

The Hardy-Littlewood maximal operator H:

$$Hf(x) = \sup_{r>0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y)| dy \quad \left(f \in L^{1}_{\text{loc}}(\mathbb{R}^{n})\right).$$

推论1.14. Let $p \in (1, \infty)$. There is a constant C(p) > 0 such that $\|Hf\|_p \le C(p)\|f\|_p, \quad \forall f \in L^p(\mathbb{R}^n).$

作业P₁₉₆ 27, 29; P₁₉₉ 36; P₂₀₈ 43, 45;